Documentation

Mathlib.Algebra.Lie.Solvable

Solvable Lie algebras #

Like groups, Lie algebras admit a natural concept of solvability. We define this here via the derived series and prove some related results. We also define the radical of a Lie algebra and prove that it is solvable when the Lie algebra is Noetherian.

Main definitions #

Tags #

lie algebra, derived series, derived length, solvable, radical

def LieAlgebra.derivedSeriesOfIdeal (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] (k : ) :
LieIdeal R LLieIdeal R L

A generalisation of the derived series of a Lie algebra, whose zeroth term is a specified ideal.

It can be more convenient to work with this generalisation when considering the derived series of an ideal since it provides a type-theoretic expression of the fact that the terms of the ideal's derived series are also ideals of the enclosing algebra.

See also LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_comap and LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map below.

Equations
    Instances For
      @[simp]
      theorem LieAlgebra.derivedSeriesOfIdeal_zero (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) :
      @[reducible, inline]
      abbrev LieAlgebra.derivedSeries (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] (k : ) :

      The derived series of Lie ideals of a Lie algebra.

      Equations
        Instances For
          theorem LieAlgebra.derivedSeriesOfIdeal_le {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {I J : LieIdeal R L} {k l : } (h₁ : I J) (h₂ : l k) :
          theorem LieAlgebra.derivedSeriesOfIdeal_mono {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {I J : LieIdeal R L} (h : I J) (k : ) :
          theorem LieAlgebra.derivedSeriesOfIdeal_antitone {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) {k l : } (h : l k) :
          @[simp]
          theorem LieIdeal.derivedSeries_add_eq_bot {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {k l : } {I J : LieIdeal R L} (hI : LieAlgebra.derivedSeries R (↥I) k = ) (hJ : LieAlgebra.derivedSeries R (↥J) l = ) :
          LieAlgebra.derivedSeries R (↥(I + J)) (k + l) =
          theorem LieIdeal.derivedSeries_map_le {R : Type u} {L : Type v} {L' : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : L' →ₗ⁅R L} (k : ) :
          theorem LieIdeal.derivedSeries_map_eq {R : Type u} {L : Type v} {L' : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : L' →ₗ⁅R L} (k : ) (h : Function.Surjective f) :

          A Lie algebra is solvable if its derived series reaches 0 (in a finite number of steps).

          Instances
            theorem LieAlgebra.isSolvable_iff (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] :
            IsSolvable L ∃ (k : ), derivedSeries R L k =
            theorem LieAlgebra.IsSolvable.solvable (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] [IsSolvable L] :
            ∃ (k : ), derivedSeries R L k =
            theorem LieAlgebra.IsSolvable.mk {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {k : } (h : derivedSeries R L k = ) :
            instance LieAlgebra.isSolvableAdd (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] {I J : LieIdeal R L} [IsSolvable I] [IsSolvable J] :
            IsSolvable ↥(I + J)
            theorem Function.Injective.lieAlgebra_isSolvable {R : Type u} {L : Type v} {L' : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : L' →ₗ⁅R L} [hL : LieAlgebra.IsSolvable L] (h : Injective f) :
            theorem Function.Surjective.lieAlgebra_isSolvable {R : Type u} {L : Type v} {L' : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : L' →ₗ⁅R L} [hL' : LieAlgebra.IsSolvable L'] (h : Surjective f) :
            instance LieHom.isSolvable_range {R : Type u} {L : Type v} {L' : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L' →ₗ⁅R L) [LieAlgebra.IsSolvable L'] :
            theorem LieAlgebra.solvable_iff_equiv_solvable {R : Type u} {L : Type v} {L' : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (e : L' ≃ₗ⁅R L) :
            theorem LieAlgebra.le_solvable_ideal_solvable {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {I J : LieIdeal R L} (h₁ : I J) :
            IsSolvable JIsSolvable I
            @[instance 100]
            def LieAlgebra.radical (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] :

            The (solvable) radical of Lie algebra is the sSup of all solvable ideals.

            Equations
              Instances For
                instance LieAlgebra.radicalIsSolvable (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] [IsNoetherian R L] :

                The radical of a Noetherian Lie algebra is solvable.

                The direction of this lemma is actually true without the IsNoetherian assumption.

                noncomputable def LieAlgebra.derivedLengthOfIdeal (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) :

                Given a solvable Lie ideal I with derived series I = D₀ ≥ D₁ ≥ ⋯ ≥ Dₖ = ⊥, this is the natural number k (the number of inclusions).

                For a non-solvable ideal, the value is 0.

                Equations
                  Instances For
                    @[reducible, inline]
                    noncomputable abbrev LieAlgebra.derivedLength (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] :

                    The derived length of a Lie algebra is the derived length of its 'top' Lie ideal.

                    See also LieAlgebra.derivedLength_eq_derivedLengthOfIdeal.

                    Equations
                      Instances For
                        noncomputable def LieAlgebra.derivedAbelianOfIdeal {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) :

                        Given a solvable Lie ideal I with derived series I = D₀ ≥ D₁ ≥ ⋯ ≥ Dₖ = ⊥, this is the k-1th term in the derived series (and is therefore an Abelian ideal contained in I).

                        For a non-solvable ideal, this is the zero ideal, .

                        Equations
                          Instances For
                            theorem LieAlgebra.derivedLength_zero {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) [IsSolvable I] :