Documentation

Mathlib.Algebra.Lie.Weights.RootSystem

The root system associated with a Lie algebra #

We show that the roots of a finite dimensional splitting semisimple Lie algebra over a field of characteristic 0 form a root system. We achieve this by studying root chains.

Main results #

def LieAlgebra.IsKilling.chainLength {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :

The length of the α-chain through β. See chainBotCoeff_add_chainTopCoeff.

Equations
    Instances For
      theorem LieAlgebra.IsKilling.chainLength_of_isZero {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsZero) :
      chainLength α β = 0
      theorem LieAlgebra.IsKilling.chainLength_nsmul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) {x : L} (hx : x rootSpace H (LieModule.chainTop (⇑α) β)) :
      theorem LieAlgebra.IsKilling.chainLength_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) {x : L} (hx : x rootSpace H (LieModule.chainTop (⇑α) β)) :
      (chainLength α β) x = coroot α, x
      theorem LieAlgebra.IsKilling.apply_coroot_eq_cast' {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
      β (coroot α) = ↑((chainLength α β) - 2 * (LieModule.chainTopCoeff (⇑α) β))
      theorem LieAlgebra.IsKilling.rootSpace_neg_nsmul_add_chainTop_of_le {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) {n : } (hn : n chainLength α β) :
      rootSpace H (-(n α) + (LieModule.chainTop (⇑α) β))
      theorem LieAlgebra.IsKilling.rootSpace_neg_nsmul_add_chainTop_of_lt {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsNonZero) {n : } (hn : chainLength α β < n) :
      rootSpace H (-(n α) + (LieModule.chainTop (⇑α) β)) =
      @[simp]
      theorem LieAlgebra.IsKilling.chainLength_neg {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
      chainLength (-α) β = chainLength α β
      @[simp]
      theorem LieAlgebra.IsKilling.apply_coroot_eq_cast {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
      β (coroot α) = ↑((LieModule.chainBotCoeff (⇑α) β) - (LieModule.chainTopCoeff (⇑α) β))

      If β - qα ... β ... β + rα is the α-chain through β, then β (coroot α) = q - r. In particular, it is an integer.

      theorem LieAlgebra.IsKilling.le_chainBotCoeff_of_rootSpace_ne_top {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsNonZero) (n : ) (hn : rootSpace H (-n α + β) ) :
      n (LieModule.chainBotCoeff (⇑α) β)
      theorem LieAlgebra.IsKilling.rootSpace_zsmul_add_ne_bot_iff {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsNonZero) (n : ) :
      rootSpace H (n α + β) n (LieModule.chainTopCoeff (⇑α) β) -n (LieModule.chainBotCoeff (⇑α) β)

      Members of the α-chain through β are the only roots of the form β - kα.

      theorem LieAlgebra.IsKilling.rootSpace_zsmul_add_ne_bot_iff_mem {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsNonZero) (n : ) :
      rootSpace H (n α + β) n Finset.Icc (-(LieModule.chainBotCoeff (⇑α) β)) (LieModule.chainTopCoeff (⇑α) β)
      theorem LieAlgebra.IsKilling.chainTopCoeff_of_eq_zsmul_add {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsNonZero) (β' : LieModule.Weight K (↥H) L) (n : ) (hβ' : β' = n α + β) :
      (LieModule.chainTopCoeff (⇑α) β') = (LieModule.chainTopCoeff (⇑α) β) - n
      theorem LieAlgebra.IsKilling.chainBotCoeff_of_eq_zsmul_add {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsNonZero) (β' : LieModule.Weight K (↥H) L) (n : ) (hβ' : β' = n α + β) :
      (LieModule.chainBotCoeff (⇑α) β') = (LieModule.chainBotCoeff (⇑α) β) + n
      theorem LieAlgebra.IsKilling.chainLength_of_eq_zsmul_add {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β β' : LieModule.Weight K (↥H) L) (n : ) (hβ' : β' = n α + β) :
      theorem LieAlgebra.IsKilling.rootSpace_two_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : LieModule.Weight K (↥H) L) ( : α.IsNonZero) :
      rootSpace H (2 α) =
      theorem LieAlgebra.IsKilling.eq_neg_one_or_eq_zero_or_eq_one_of_eq_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : α.IsNonZero) (k : K) (h : β = k α) :
      k = -1 k = 0 k = 1
      theorem LieAlgebra.IsKilling.eq_neg_or_eq_of_eq_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) ( : β.IsNonZero) (k : K) (h : β = k α) :
      β = -α β = α

      ±α are the only K-multiples of a root α that are also (non-zero) roots.

      def LieAlgebra.IsKilling.reflectRoot {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
      LieModule.Weight K (↥H) L

      The reflection of a root along another.

      Equations
        Instances For

          The root system of a finite-dimensional Lie algebra with non-degenerate Killing form over a field of characteristic zero, relative to a splitting Cartan subalgebra.

          Equations
            Instances For
              @[simp]
              theorem LieAlgebra.IsKilling.rootSystem_pairing_apply {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : { x : LieModule.Weight K (↥H) L // x LieSubalgebra.root }) :
              (rootSystem H).pairing β α = β (coroot α)