Documentation

Mathlib.Algebra.Ring.Subring.MulOpposite

Subring of opposite rings #

For every ring R, we construct an equivalence between subrings of R and that of Rᵐᵒᵖ.

def Subring.op {R : Type u_2} [Ring R] (S : Subring R) :

Pull a subring back to an opposite subring along MulOpposite.unop

Equations
    Instances For
      @[simp]
      theorem Subring.coe_op {R : Type u_2} [Ring R] (S : Subring R) :
      @[simp]
      theorem Subring.op_toSubsemiring {R : Type u_2} [Ring R] (S : Subring R) :
      @[simp]
      theorem Subring.mem_op {R : Type u_2} [Ring R] {x : Rᵐᵒᵖ} {S : Subring R} :
      def Subring.unop {R : Type u_2} [Ring R] (S : Subring Rᵐᵒᵖ) :

      Pull an opposite subring back to a subring along MulOpposite.op

      Equations
        Instances For
          @[simp]
          theorem Subring.coe_unop {R : Type u_2} [Ring R] (S : Subring Rᵐᵒᵖ) :
          @[simp]
          theorem Subring.mem_unop {R : Type u_2} [Ring R] {x : R} {S : Subring Rᵐᵒᵖ} :
          @[simp]
          theorem Subring.unop_op {R : Type u_2} [Ring R] (S : Subring R) :
          S.op.unop = S
          @[simp]
          theorem Subring.op_unop {R : Type u_2} [Ring R] (S : Subring Rᵐᵒᵖ) :
          S.unop.op = S

          Lattice results #

          theorem Subring.op_le_iff {R : Type u_2} [Ring R] {S₁ : Subring R} {S₂ : Subring Rᵐᵒᵖ} :
          S₁.op S₂ S₁ S₂.unop
          theorem Subring.le_op_iff {R : Type u_2} [Ring R] {S₁ : Subring Rᵐᵒᵖ} {S₂ : Subring R} :
          S₁ S₂.op S₁.unop S₂
          @[simp]
          theorem Subring.op_le_op_iff {R : Type u_2} [Ring R] {S₁ S₂ : Subring R} :
          S₁.op S₂.op S₁ S₂
          @[simp]
          theorem Subring.unop_le_unop_iff {R : Type u_2} [Ring R] {S₁ S₂ : Subring Rᵐᵒᵖ} :
          S₁.unop S₂.unop S₁ S₂

          A subring S of R determines a subring S.op of the opposite ring Rᵐᵒᵖ.

          Equations
            Instances For
              @[simp]
              theorem Subring.opEquiv_apply {R : Type u_2} [Ring R] (S : Subring R) :
              @[simp]
              theorem Subring.op_inj {R : Type u_2} [Ring R] {S T : Subring R} :
              S.op = T.op S = T
              @[simp]
              theorem Subring.unop_inj {R : Type u_2} [Ring R] {S T : Subring Rᵐᵒᵖ} :
              S.unop = T.unop S = T
              @[simp]
              theorem Subring.op_bot {R : Type u_2} [Ring R] :
              @[simp]
              theorem Subring.op_eq_bot {R : Type u_2} [Ring R] {S : Subring R} :
              S.op = S =
              @[simp]
              theorem Subring.unop_bot {R : Type u_2} [Ring R] :
              @[simp]
              theorem Subring.unop_eq_bot {R : Type u_2} [Ring R] {S : Subring Rᵐᵒᵖ} :
              @[simp]
              theorem Subring.op_top {R : Type u_2} [Ring R] :
              @[simp]
              theorem Subring.op_eq_top {R : Type u_2} [Ring R] {S : Subring R} :
              S.op = S =
              @[simp]
              theorem Subring.unop_top {R : Type u_2} [Ring R] :
              @[simp]
              theorem Subring.unop_eq_top {R : Type u_2} [Ring R] {S : Subring Rᵐᵒᵖ} :
              theorem Subring.op_sup {R : Type u_2} [Ring R] (S₁ S₂ : Subring R) :
              (S₁S₂).op = S₁.opS₂.op
              theorem Subring.unop_sup {R : Type u_2} [Ring R] (S₁ S₂ : Subring Rᵐᵒᵖ) :
              (S₁S₂).unop = S₁.unopS₂.unop
              theorem Subring.op_inf {R : Type u_2} [Ring R] (S₁ S₂ : Subring R) :
              (S₁S₂).op = S₁.opS₂.op
              theorem Subring.unop_inf {R : Type u_2} [Ring R] (S₁ S₂ : Subring Rᵐᵒᵖ) :
              (S₁S₂).unop = S₁.unopS₂.unop
              theorem Subring.op_sSup {R : Type u_2} [Ring R] (S : Set (Subring R)) :
              theorem Subring.op_sInf {R : Type u_2} [Ring R] (S : Set (Subring R)) :
              theorem Subring.op_iSup {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring R) :
              (iSup S).op = ⨆ (i : ι), (S i).op
              theorem Subring.unop_iSup {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring Rᵐᵒᵖ) :
              (iSup S).unop = ⨆ (i : ι), (S i).unop
              theorem Subring.op_iInf {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring R) :
              (iInf S).op = ⨅ (i : ι), (S i).op
              theorem Subring.unop_iInf {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring Rᵐᵒᵖ) :
              (iInf S).unop = ⨅ (i : ι), (S i).unop
              def Subring.addEquivOp {R : Type u_2} [Ring R] (S : Subring R) :
              S ≃+ S.op

              Bijection between a subring S and its opposite.

              Equations
                Instances For
                  @[simp]
                  theorem Subring.addEquivOp_symm_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (b : S.op) :
                  @[simp]
                  theorem Subring.addEquivOp_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (a : S.toSubmonoid) :
                  def Subring.ringEquivOpMop {R : Type u_2} [Ring R] (S : Subring R) :
                  S ≃+* (↥S.op)ᵐᵒᵖ

                  Bijection between a subring S and MulOpposite of its opposite.

                  Equations
                    Instances For
                      @[simp]
                      theorem Subring.ringEquivOpMop_apply {R : Type u_2} [Ring R] (S : Subring R) (a✝ : S.toSubsemiring) :
                      @[simp]
                      theorem Subring.ringEquivOpMop_symm_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (a✝ : (↥S.op)ᵐᵒᵖ) :
                      def Subring.mopRingEquivOp {R : Type u_2} [Ring R] (S : Subring R) :
                      (↥S)ᵐᵒᵖ ≃+* S.op

                      Bijection between MulOpposite of a subring S and its opposite.

                      Equations
                        Instances For
                          @[simp]
                          theorem Subring.mopRingEquivOp_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (a✝ : (↥S.toSubsemiring)ᵐᵒᵖ) :
                          @[simp]
                          theorem Subring.mopRingEquivOp_symm_apply {R : Type u_2} [Ring R] (S : Subring R) (a✝ : S.op) :