Subring of opposite rings #
For every ring R
, we construct an equivalence between subrings of R
and that of Rᵐᵒᵖ
.
@[simp]
@[simp]
@[simp]
@[simp]
Lattice results #
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Subring.ringEquivOpMop_apply
{R : Type u_2}
[Ring R]
(S : Subring R)
(a✝ : ↥S.toSubsemiring)
:
@[simp]
theorem
Subring.mopRingEquivOp_apply_coe
{R : Type u_2}
[Ring R]
(S : Subring R)
(a✝ : (↥S.toSubsemiring)ᵐᵒᵖ)
:
@[simp]