Documentation

Mathlib.Algebra.Ring.Subsemiring.MulOpposite

Subsemiring of opposite semirings #

For every semiring R, we construct an equivalence between subsemirings of R and that of Rᵐᵒᵖ.

Pull a subsemiring back to an opposite subsemiring along MulOpposite.unop

Equations
    Instances For
      @[simp]
      @[simp]

      Pull an opposite subsemiring back to a subsemiring along MulOpposite.op

      Equations
        Instances For
          @[simp]
          @[simp]
          theorem Subsemiring.unop_op {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) :
          S.op.unop = S
          @[simp]

          Lattice results #

          theorem Subsemiring.op_le_iff {R : Type u_2} [NonAssocSemiring R] {S₁ : Subsemiring R} {S₂ : Subsemiring Rᵐᵒᵖ} :
          S₁.op S₂ S₁ S₂.unop
          theorem Subsemiring.le_op_iff {R : Type u_2} [NonAssocSemiring R] {S₁ : Subsemiring Rᵐᵒᵖ} {S₂ : Subsemiring R} :
          S₁ S₂.op S₁.unop S₂
          @[simp]
          theorem Subsemiring.op_le_op_iff {R : Type u_2} [NonAssocSemiring R] {S₁ S₂ : Subsemiring R} :
          S₁.op S₂.op S₁ S₂
          @[simp]
          theorem Subsemiring.unop_le_unop_iff {R : Type u_2} [NonAssocSemiring R] {S₁ S₂ : Subsemiring Rᵐᵒᵖ} :
          S₁.unop S₂.unop S₁ S₂

          A subsemiring S of R determines a subsemiring S.op of the opposite ring Rᵐᵒᵖ.

          Equations
            Instances For
              @[simp]
              @[simp]
              theorem Subsemiring.op_inj {R : Type u_2} [NonAssocSemiring R] {S T : Subsemiring R} :
              S.op = T.op S = T
              @[simp]
              theorem Subsemiring.unop_inj {R : Type u_2} [NonAssocSemiring R] {S T : Subsemiring Rᵐᵒᵖ} :
              S.unop = T.unop S = T
              @[simp]
              @[simp]
              theorem Subsemiring.op_eq_bot {R : Type u_2} [NonAssocSemiring R] {S : Subsemiring R} :
              S.op = S =
              @[simp]
              @[simp]
              theorem Subsemiring.op_eq_top {R : Type u_2} [NonAssocSemiring R] {S : Subsemiring R} :
              S.op = S =
              theorem Subsemiring.op_sup {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring R) :
              (S₁S₂).op = S₁.opS₂.op
              theorem Subsemiring.unop_sup {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring Rᵐᵒᵖ) :
              (S₁S₂).unop = S₁.unopS₂.unop
              theorem Subsemiring.op_inf {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring R) :
              (S₁S₂).op = S₁.opS₂.op
              theorem Subsemiring.unop_inf {R : Type u_2} [NonAssocSemiring R] (S₁ S₂ : Subsemiring Rᵐᵒᵖ) :
              (S₁S₂).unop = S₁.unopS₂.unop
              theorem Subsemiring.op_iSup {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring R) :
              (iSup S).op = ⨆ (i : ι), (S i).op
              theorem Subsemiring.unop_iSup {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring Rᵐᵒᵖ) :
              (iSup S).unop = ⨆ (i : ι), (S i).unop
              theorem Subsemiring.op_iInf {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring R) :
              (iInf S).op = ⨅ (i : ι), (S i).op
              theorem Subsemiring.unop_iInf {ι : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ιSubsemiring Rᵐᵒᵖ) :
              (iInf S).unop = ⨅ (i : ι), (S i).unop
              def Subsemiring.addEquivOp {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) :
              S ≃+ S.op

              Bijection between a subsemiring S and its opposite.

              Equations
                Instances For
                  @[simp]
                  @[simp]

                  Bijection between a subsemiring S and MulOpposite of its opposite.

                  Equations
                    Instances For
                      @[simp]
                      theorem Subsemiring.ringEquivOpMop_apply {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (a✝ : S) :

                      Bijection between MulOpposite of a subsemiring S and its opposite.

                      Equations
                        Instances For