Subsemiring of opposite semirings #
For every semiring R
, we construct an equivalence between subsemirings of R
and that of Rᵐᵒᵖ
.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Lattice results #
theorem
Subsemiring.op_le_iff
{R : Type u_2}
[NonAssocSemiring R]
{S₁ : Subsemiring R}
{S₂ : Subsemiring Rᵐᵒᵖ}
:
theorem
Subsemiring.le_op_iff
{R : Type u_2}
[NonAssocSemiring R]
{S₁ : Subsemiring Rᵐᵒᵖ}
{S₂ : Subsemiring R}
:
@[simp]
@[simp]
theorem
Subsemiring.unop_le_unop_iff
{R : Type u_2}
[NonAssocSemiring R]
{S₁ S₂ : Subsemiring Rᵐᵒᵖ}
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Subsemiring.op_iSup
{ι : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ι → Subsemiring R)
:
theorem
Subsemiring.unop_iSup
{ι : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ι → Subsemiring Rᵐᵒᵖ)
:
theorem
Subsemiring.op_iInf
{ι : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ι → Subsemiring R)
:
theorem
Subsemiring.unop_iInf
{ι : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ι → Subsemiring Rᵐᵒᵖ)
:
Bijection between a subsemiring S
and its opposite.
Equations
Instances For
@[simp]
theorem
Subsemiring.addEquivOp_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(a : ↥S.toSubmonoid)
:
@[simp]
theorem
Subsemiring.addEquivOp_symm_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(b : ↥S.op)
:
Bijection between a subsemiring S
and MulOpposite
of its opposite.
Equations
Instances For
@[simp]
theorem
Subsemiring.ringEquivOpMop_apply
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(a✝ : ↥S)
:
@[simp]
theorem
Subsemiring.ringEquivOpMop_symm_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(a✝ : (↥S.op)ᵐᵒᵖ)
:
Bijection between MulOpposite
of a subsemiring S
and its opposite.
Equations
Instances For
@[simp]
theorem
Subsemiring.mopRingEquivOp_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(a✝ : (↥S)ᵐᵒᵖ)
:
@[simp]
theorem
Subsemiring.mopRingEquivOp_symm_apply
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(a✝ : ↥S.op)
: