Documentation

Mathlib.AlgebraicGeometry.AffineSpace

Affine space #

Main definitions #

𝔸(n; S) is the affine n-space over S. Note that n is an arbitrary index type (e.g. Fin m).

Equations
    Instances For

      𝔸(n; S) is the affine n-space over S.

      Equations
        Instances For

          The map from the affine n-space over S to the integral model Spec ℤ[n].

          Equations
            Instances For

              Morphisms into Spec ℤ[n] are equivalent the choice of n global sections. Use homOverEquiv instead.

              Equations
                Instances For

                  The standard coordinates of 𝔸(n; S).

                  Equations
                    Instances For
                      def AlgebraicGeometry.AffineSpace.homOfVector {n : Type v} {S X : Scheme} (f : X S) (v : n(X.presheaf.obj (Opposite.op ))) :

                      The morphism X ⟶ 𝔸(n; S) given by a X ⟶ S and a choice of n-coordinate functions.

                      Equations
                        Instances For

                          S-morphisms into Spec 𝔸(n; S) are equivalent to the choice of n global sections.

                          Equations
                            Instances For
                              @[simp]

                              The affine space over an affine base is isomorphic to the spectrum of the polynomial ring. Also see AffineSpace.SpecIso.

                              Equations
                                Instances For

                                  The affine space over an affine base is isomorphic to the spectrum of the polynomial ring.

                                  Equations
                                    Instances For

                                      𝔸(n; S) is functorial wrt S.

                                      Equations
                                        Instances For
                                          @[simp]

                                          The map between affine spaces over affine bases is isomorphic to the natural map between polynomial rings.

                                          Equations
                                            Instances For
                                              def AlgebraicGeometry.AffineSpace.reindex {n m : Type v} (i : mn) (S : Scheme) :

                                              𝔸(n; S) is functorial wrt n.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem AlgebraicGeometry.AffineSpace.reindex_comp {n₁ n₂ n₃ : Type v} (i : n₁n₂) (j : n₂n₃) (S : Scheme) :
                                                  @[simp]
                                                  theorem AlgebraicGeometry.AffineSpace.map_reindex {n₁ n₂ : Type v} (i : n₁n₂) {S T : Scheme} (f : S T) :
                                                  @[simp]
                                                  theorem AlgebraicGeometry.AffineSpace.functor_obj_map (n : Type vᵒᵖ) {X✝ Y✝ : Scheme} (f : X✝ Y✝) :