Documentation

Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Basic

Basic properties of the scheme Proj A #

The scheme Proj 𝒜 for a graded algebra 𝒜 is constructed in AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean. In this file we provide basic properties of the scheme.

Main results #

def AlgebraicGeometry.Proj.basicOpen {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) :
(Proj 𝒜).Opens

The basic open set D₊(f) associated to f : A.

Equations
    Instances For
      @[simp]
      theorem AlgebraicGeometry.Proj.mem_basicOpen {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) (x : (Proj 𝒜)) :
      @[simp]
      theorem AlgebraicGeometry.Proj.basicOpen_one {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] :
      basicOpen 𝒜 1 =
      @[simp]
      theorem AlgebraicGeometry.Proj.basicOpen_zero {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] :
      basicOpen 𝒜 0 =
      @[simp]
      theorem AlgebraicGeometry.Proj.basicOpen_pow {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) (n : ) (hn : 0 < n) :
      basicOpen 𝒜 (f ^ n) = basicOpen 𝒜 f
      theorem AlgebraicGeometry.Proj.basicOpen_mul {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f g : A) :
      basicOpen 𝒜 (f * g) = basicOpen 𝒜 fbasicOpen 𝒜 g
      theorem AlgebraicGeometry.Proj.basicOpen_mono {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f g : A) (hfg : f g) :
      basicOpen 𝒜 g basicOpen 𝒜 f
      theorem AlgebraicGeometry.Proj.basicOpen_eq_iSup_proj {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) :
      basicOpen 𝒜 f = ⨆ (i : ), basicOpen 𝒜 ((GradedAlgebra.proj 𝒜 i) f)
      theorem AlgebraicGeometry.Proj.iSup_basicOpen_eq_top {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {ι : Type u_2} (f : ιA) (hf : (HomogeneousIdeal.irrelevant 𝒜).toIdeal Ideal.span (Set.range f)) :
      ⨆ (i : ι), basicOpen 𝒜 (f i) =

      If { xᵢ } spans the irrelevant ideal of A, then D₊(xᵢ) covers Proj A.

      theorem AlgebraicGeometry.Proj.iSup_basicOpen_eq_top' {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {ι : Type u_2} (f : ιA) (hfn : ∀ (i : ι), ∃ (n : ), f i 𝒜 n) (hf : Algebra.adjoin (↥(𝒜 0)) (Set.range f) = ) :
      ⨆ (i : ι), basicOpen 𝒜 (f i) =

      If { xᵢ } are homogeneous and span A as an A₀ algebra, then D₊(xᵢ) covers Proj A.

      The canonical map (A_f)₀ ⟶ Γ(Proj A, D₊(f)). This is an isomorphism when f is homogeneous of positive degree. See basicOpenIsoAway below.

      Equations
        Instances For
          noncomputable def AlgebraicGeometry.Proj.basicOpenToSpec {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) :

          The canonical map Proj A |_ D₊(f) ⟶ Spec (A_f)₀. This is an isomorphism when f is homogeneous of positive degree. See basicOpenIsoSpec below.

          Equations
            Instances For
              noncomputable def AlgebraicGeometry.Proj.toSpecZero {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] :
              Proj 𝒜 Spec (CommRingCat.of (𝒜 0))

              The structure map Proj A ⟶ Spec A₀.

              Equations
                Instances For
                  noncomputable def AlgebraicGeometry.Proj.basicOpenIsoSpec {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

                  The canonical isomorphism Proj A |_ D₊(f) ≅ Spec (A_f)₀ when f is homogeneous of positive degree.

                  Equations
                    Instances For
                      theorem AlgebraicGeometry.Proj.basicOpenIsoSpec_hom {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                      (basicOpenIsoSpec 𝒜 f f_deg hm).hom = basicOpenToSpec 𝒜 f
                      noncomputable def AlgebraicGeometry.Proj.basicOpenIsoAway {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

                      The canonical isomorphism (A_f)₀ ≅ Γ(Proj A, D₊(f)) when f is homogeneous of positive degree.

                      Equations
                        Instances For
                          theorem AlgebraicGeometry.Proj.basicOpenIsoAway_hom {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                          (basicOpenIsoAway 𝒜 f f_deg hm).hom = awayToSection 𝒜 f
                          noncomputable def AlgebraicGeometry.Proj.awayι {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

                          The open immersion Spec (A_f)₀ ⟶ Proj A.

                          Equations
                            Instances For
                              theorem AlgebraicGeometry.Proj.basicOpenIsoSpec_inv_ι {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                              CategoryTheory.CategoryStruct.comp (basicOpenIsoSpec 𝒜 f f_deg hm).inv (basicOpen 𝒜 f).ι = awayι 𝒜 f f_deg hm
                              theorem AlgebraicGeometry.Proj.basicOpenIsoSpec_inv_ι_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {Z : Scheme} (h : Proj 𝒜 Z) :
                              instance AlgebraicGeometry.Proj.instIsOpenImmersionAwayι {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                              IsOpenImmersion (awayι 𝒜 f f_deg hm)
                              theorem AlgebraicGeometry.Proj.opensRange_awayι {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                              Scheme.Hom.opensRange (awayι 𝒜 f f_deg hm) = basicOpen 𝒜 f
                              theorem AlgebraicGeometry.Proj.isAffineOpen_basicOpen {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                              theorem AlgebraicGeometry.Proj.awayι_toSpecZero {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                              theorem AlgebraicGeometry.Proj.awayMap_awayToSection {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m' : } {g : A} (g_deg : g 𝒜 m') {x : A} (hx : x = f * g) :
                              theorem AlgebraicGeometry.Proj.basicOpenToSpec_SpecMap_awayMap {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m' : } {g : A} (g_deg : g 𝒜 m') {x : A} (hx : x = f * g) :
                              theorem AlgebraicGeometry.Proj.SpecMap_awayMap_awayι {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') {x : A} (hx : x = f * g) :
                              theorem AlgebraicGeometry.Proj.SpecMap_awayMap_awayι_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') {x : A} (hx : x = f * g) {Z : Scheme} (h : Proj 𝒜 Z) :
                              noncomputable def AlgebraicGeometry.Proj.pullbackAwayιIso {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) :

                              The isomorphism D₊(f) ×[Proj 𝒜] D₊(g) ≅ D₊(fg).

                              Equations
                                Instances For
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) :
                                  CategoryTheory.CategoryStruct.comp (pullbackAwayιIso 𝒜 f_deg hm g_deg hm' hx).hom (awayι 𝒜 x ) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (awayι 𝒜 f f_deg hm) (awayι 𝒜 g g_deg hm')) (awayι 𝒜 f f_deg hm)
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_hom_awayι_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) {Z : Scheme} (h : Proj 𝒜 Z) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_left_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) {Z : Scheme} (h : Spec (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f)) Z) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_hom_SpecMap_awayMap_right_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) {Z : Scheme} (h : Spec (CommRingCat.of (HomogeneousLocalization.Away 𝒜 g)) Z) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_inv_fst_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) {Z : Scheme} (h : Spec (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f)) Z) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Proj.pullbackAwayιIso_inv_snd_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') {x : A} (hx : x = f * g) {Z : Scheme} (h : Spec (CommRingCat.of (HomogeneousLocalization.Away 𝒜 g)) Z) :
                                  theorem AlgebraicGeometry.Proj.awayι_preimage_basicOpen {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) {m' : } {g : A} (g_deg : g 𝒜 m') (hm' : 0 < m') :
                                  noncomputable def AlgebraicGeometry.Proj.openCoverOfISupEqTop {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {ι : Type u_2} (f : ιA) {m : ι} (f_deg : ∀ (i : ι), f i 𝒜 (m i)) (hm : ∀ (i : ι), 0 < m i) (hf : (HomogeneousIdeal.irrelevant 𝒜).toIdeal Ideal.span (Set.range f)) :

                                  Given a family of homogeneous elements f of positive degree that spans the irrelevant ideal, Spec (A_f)₀ ⟶ Proj A forms an affine open cover of Proj A.

                                  Equations
                                    Instances For
                                      noncomputable def AlgebraicGeometry.Proj.affineOpenCover {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] :

                                      Proj A is covered by Spec (A_f)₀ for all homogeneous elements of positive degree.

                                      Equations
                                        Instances For
                                          noncomputable def AlgebraicGeometry.Proj.stalkIso {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (x : (Proj 𝒜)) :

                                          The stalk of Proj A at x is the degree 0 part of the localization of A at x.

                                          Equations
                                            Instances For
                                              def AlgebraicGeometry.Proj.toBasicOpenOfGlobalSections {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {X : Scheme} (f : A →+* (X.presheaf.obj (Opposite.op ))) {x : (X.presheaf.obj (Opposite.op ))} {t : A} {d : } (H : f t = x) (h0d : 0 < d) (hd : t 𝒜 d) :
                                              (X.basicOpen x) (basicOpen 𝒜 t)

                                              Given a graded ring A and a map f : A →+* Γ(X, ⊤), for each homogeneous t of positive degree, it induces a map from D(f(t)) ⟶ D₊(t).

                                              Equations
                                                Instances For
                                                  theorem AlgebraicGeometry.Proj.homOfLE_toBasicOpenOfGlobalSections_ι {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {X : Scheme} (f : A →+* (X.presheaf.obj (Opposite.op ))) {x x' : (X.presheaf.obj (Opposite.op ))} {t t' : A} {d d' : } {H : f t = x} {h0d : 0 < d} {hd : t 𝒜 d} {H' : f t' = x'} {h0d' : 0 < d'} {hd' : t' 𝒜 d'} {s : A} (hts : t * s = t') {n : } (hn : d + n = d') (hs : s 𝒜 n) :
                                                  theorem AlgebraicGeometry.Proj.homOfLE_toBasicOpenOfGlobalSections_ι_assoc {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {X : Scheme} (f : A →+* (X.presheaf.obj (Opposite.op ))) {x x' : (X.presheaf.obj (Opposite.op ))} {t t' : A} {d d' : } {H : f t = x} {h0d : 0 < d} {hd : t 𝒜 d} {H' : f t' = x'} {h0d' : 0 < d'} {hd' : t' 𝒜 d'} {s : A} (hts : t * s = t') {n : } (hn : d + n = d') (hs : s 𝒜 n) {Z : Scheme} (h : Proj 𝒜 Z) :

                                                  Given a graded ring A and a map f : A →+* Γ(X, ⊤) such that the image of the irrelevant ideal under f generates the whole ring, the set of D(f(r)) for homogeneous r of positive degree forms an open cover on X.

                                                  Equations
                                                    Instances For
                                                      def AlgebraicGeometry.Proj.fromOfGlobalSections {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {X : Scheme} (f : A →+* (X.presheaf.obj (Opposite.op ))) (hf : Ideal.map f (HomogeneousIdeal.irrelevant 𝒜).toIdeal = ) :
                                                      X Proj 𝒜

                                                      Given a graded ring A and a map f : A →+* Γ(X, ⊤) such that the image of the irrelevant ideal under f generates the whole ring, we can construct a map X ⟶ Proj 𝒜.

                                                      Equations
                                                        Instances For
                                                          theorem AlgebraicGeometry.Proj.fromOfGlobalSections_preimage_basicOpen {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {X : Scheme} (f : A →+* (X.presheaf.obj (Opposite.op ))) (hf : Ideal.map f (HomogeneousIdeal.irrelevant 𝒜).toIdeal = ) {r : A} {n : } (hn : 0 < n) (hr : r 𝒜 n) :
                                                          theorem AlgebraicGeometry.Proj.fromOfGlobalSections_morphismRestrict {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {X : Scheme} (f : A →+* (X.presheaf.obj (Opposite.op ))) (hf : Ideal.map f (HomogeneousIdeal.irrelevant 𝒜).toIdeal = ) {r : A} {n : } (hn : 0 < n) (hr : r 𝒜 n) :
                                                          theorem AlgebraicGeometry.Proj.fromOfGlobalSections_resLE {R : Type u_1} {A : Type u} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {X : Scheme} (f : A →+* (X.presheaf.obj (Opposite.op ))) (hf : Ideal.map f (HomogeneousIdeal.irrelevant 𝒜).toIdeal = ) {r : A} {n : } (hn : 0 < n) (hr : r 𝒜 n) :
                                                          Scheme.Hom.resLE (fromOfGlobalSections 𝒜 f hf) (basicOpen 𝒜 r) (X.basicOpen (f r)) = toBasicOpenOfGlobalSections 𝒜 f hn hr