Documentation

Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme

Proj as a scheme #

This file is to prove that Proj is a scheme.

Notation #

Implementation #

In AlgebraicGeometry/ProjectiveSpectrum/StructureSheaf.lean, we have given Proj a structure sheaf so that Proj is a locally ringed space. In this file we will prove that Proj equipped with this structure sheaf is a scheme. We achieve this by using an affine cover by basic open sets in Proj, more specifically:

  1. We prove that Proj can be covered by basic open sets at homogeneous element of positive degree.
  2. We prove that for any homogeneous element f : A of positive degree m, Proj.T | (pbo f) is homeomorphic to Spec.T A⁰_f:
  1. Then we construct a morphism of locally ringed spaces α : Proj| (pbo f) ⟶ Spec.T A⁰_f as the following: by the Gamma-Spec adjunction, it is sufficient to construct a ring map A⁰_f → Γ(Proj, pbo f) from the ring of homogeneous localization of A away from f to the local sections of structure sheaf of projective spectrum on the basic open set around f. The map A⁰_f → Γ(Proj, pbo f) is constructed in awayToΓ and is defined by sending s ∈ A⁰_f to the section x ↦ s on pbo f.

Main Definitions and Statements #

For a homogeneous element f of degree m

If we further assume m is positive

Finally,

Reference #

Proj restrict to some open set

Equations
    Instances For

      For any x in Proj| (pbo f), the corresponding ideal in Spec A⁰_f. This fact that this ideal is prime is proven in TopComponent.Forward.toFun.

      Equations
        Instances For

          The function between the basic open set D(f) in Proj to the corresponding basic open set in Spec A⁰_f. This is bundled into a continuous map in TopComponent.forward.

          Equations
            Instances For

              The continuous function from the basic open set D(f) in Proj to the corresponding basic open set in Spec A⁰_f.

              Equations
                Instances For

                  The function from Spec A⁰_f to Proj|D(f) is defined by q ↦ {a | aᵢᵐ/fⁱ ∈ q}, i.e. sending q a prime ideal in A⁰_f to the homogeneous prime relevant ideal containing only and all the elements a : A such that for every i, the degree 0 element formed by dividing the m-th power of the i-th projection of a by the i-th power of the degree-m homogeneous element f, lies in q.

                  The set {a | aᵢᵐ/fⁱ ∈ q}

                  Equations
                    Instances For
                      theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.mem_carrier_iff {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) (a : A) :
                      a carrier f_deg q ∀ (i : ), HomogeneousLocalization.mk { deg := m * i, num := (GradedAlgebra.proj 𝒜 i) a ^ m, , den := f ^ i, , den_mem := } q.asIdeal
                      theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.mem_carrier_iff_of_mem {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) (a : A) {n : } (hn : a 𝒜 n) :
                      a carrier f_deg q HomogeneousLocalization.mk { deg := m * n, num := a ^ m, , den := f ^ n, , den_mem := } q.asIdeal
                      theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.mem_carrier_iff_of_mem_mul {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) (a : A) {n : } (hn : a 𝒜 (n * m)) :
                      a carrier f_deg q HomogeneousLocalization.mk { deg := m * n, num := a, , den := f ^ n, , den_mem := } q.asIdeal
                      theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.add_mem {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) {a b : A} (ha : a carrier f_deg q) (hb : b carrier f_deg q) :
                      a + b carrier f_deg q
                      theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.zero_mem {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) :
                      0 carrier f_deg q
                      theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.smul_mem {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) (c x : A) (hx : x carrier f_deg q) :
                      c x carrier f_deg q
                      def AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.asIdeal {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) :

                      For a prime ideal q in A⁰_f, the set {a | aᵢᵐ/fⁱ ∈ q} as an ideal.

                      Equations
                        Instances For

                          For a prime ideal q in A⁰_f, the set {a | aᵢᵐ/fⁱ ∈ q} as a homogeneous ideal.

                          Equations
                            Instances For
                              theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.denom_notMem {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) :
                              fasIdeal f_deg hm q
                              @[deprecated AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.denom_notMem (since := "2025-05-23")]
                              theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.denom_not_mem {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) :
                              fasIdeal f_deg hm q

                              Alias of AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.denom_notMem.

                              theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.asIdeal.ne_top {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) :
                              asIdeal f_deg hm q
                              theorem AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.asIdeal.prime {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (q : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) :
                              (asIdeal f_deg hm q).IsPrime

                              The function Spec A⁰_f → Proj|D(f) sending q to {a | aᵢᵐ/fⁱ ∈ q}.

                              Equations
                                Instances For
                                  theorem AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_fromSpec {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (x : (Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away 𝒜 f))).toPresheafedSpace) :
                                  theorem AlgebraicGeometry.ProjIsoSpecTopComponent.fromSpec_toSpec {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (x : ((Proj.toLocallyRingedSpace 𝒜).restrict ).toPresheafedSpace) :
                                  theorem AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_injective {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                                  theorem AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_surjective {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                                  theorem AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_bijective {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                                  theorem AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec.image_basicOpen_eq_basicOpen {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) (a : A) (i : ) :
                                  (CategoryTheory.ConcreteCategory.hom (toSpec 𝒜 f)) '' (Subtype.val ⁻¹' (ProjectiveSpectrum.basicOpen 𝒜 (((DirectSum.decompose 𝒜) a) i))) = (PrimeSpectrum.basicOpen (HomogeneousLocalization.mk { deg := m * i, num := (((DirectSum.decompose 𝒜) a) i) ^ m, , den := f ^ i, , den_mem := })).carrier

                                  The continuous function Spec A⁰_f → Proj|D(f) sending q to {a | aᵢᵐ/fⁱ ∈ q} where m is the degree of f

                                  Equations
                                    Instances For

                                      The homeomorphism Proj|D(f) ≅ Spec A⁰_f defined by

                                      • φ : Proj|D(f) ⟶ Spec A⁰_f by sending x to A⁰_f ∩ span {g / 1 | g ∈ x}
                                      • ψ : Spec A⁰_f ⟶ Proj|D(f) by sending q to {a | aᵢᵐ/fⁱ ∈ q}.
                                      Equations
                                        Instances For

                                          The ring map from A⁰_ f to the local sections of the structure sheaf of the projective spectrum of A on the basic open set D(f) defined by sending s ∈ A⁰_f to the section x ↦ s on D(f).

                                          Equations
                                            Instances For

                                              The ring map from A⁰_ f to the global sections of the structure sheaf of the projective spectrum of A restricted to the basic open set D(f).

                                              Mathematically, the map is the same as awayToSection.

                                              Equations
                                                Instances For

                                                  The morphism of locally ringed space from Proj|D(f) to Spec A⁰_f induced by the ring map A⁰_ f → Γ(Proj, D(f)) under the gamma spec adjunction.

                                                  Equations
                                                    Instances For
                                                      theorem AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_isIso {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {f : A} {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

                                                      If x is a point in the basic open set D(f) where f is a homogeneous element of positive degree, then the homogeneously localized ring A⁰ₓ has the universal property of the localization of A⁰_f at φ(x) where φ : Proj|D(f) ⟶ Spec A⁰_f is the morphism of locally ringed space constructed as above.

                                                      For an element f ∈ A with positive degree and a homogeneous ideal in D(f), we have that the stalk of Spec A⁰_ f at y is isomorphic to A⁰ₓ where y is the point in Proj corresponding to x.

                                                      Equations
                                                        Instances For
                                                          theorem AlgebraicGeometry.ProjectiveSpectrum.Proj.isIso_toSpec {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                                                          def AlgebraicGeometry.projIsoSpec {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

                                                          If f ∈ A is a homogeneous element of positive degree, then the projective spectrum restricted to D(f) as a locally ringed space is isomorphic to Spec A⁰_f.

                                                          Equations
                                                            Instances For
                                                              def AlgebraicGeometry.Proj {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] :

                                                              This is the scheme Proj(A) for any -graded ring A.

                                                              Equations
                                                                Instances For