Documentation

Mathlib.AlgebraicTopology.SimplicialObject.Basic

Simplicial objects in a category. #

A simplicial object in a category C is a C-valued presheaf on SimplexCategory. (Similarly, a cosimplicial object is a functor SimplexCategory ⥤ C.)

Notation #

The following notations can be enabled via open Simplicial.

The following notations can be enabled via open CategoryTheory.SimplicialObject.Truncated.

The category of simplicial objects valued in a category C. This is the category of contravariant functors from SimplexCategory to C.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.comp_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Functor SimplexCategoryᵒᵖ C} (α : NatTrans X✝ Y✝) (β : NatTrans Y✝ Z✝) (X : SimplexCategoryᵒᵖ) :

      X _⦋n⦌ denotes the nth-term of the simplicial object X

      Equations
        Instances For
          theorem CategoryTheory.SimplicialObject.hom_ext {C : Type u} [Category.{v, u} C] {X Y : SimplicialObject C} (f g : X Y) (h : ∀ (n : SimplexCategoryᵒᵖ), f.app n = g.app n) :
          f = g

          Face maps for a simplicial object.

          Equations
            Instances For

              Degeneracy maps for a simplicial object.

              Equations
                Instances For

                  The diagonal of a simplex is the long edge of the simplex.

                  Equations
                    Instances For

                      Isomorphisms from identities in ℕ.

                      Equations
                        Instances For
                          theorem CategoryTheory.SimplicialObject.δ_comp_δ {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i j : Fin (n + 2)} (H : i j) :

                          The generic case of the first simplicial identity

                          theorem CategoryTheory.SimplicialObject.δ_comp_δ' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) :
                          theorem CategoryTheory.SimplicialObject.δ_comp_δ'' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) :
                          CategoryStruct.comp (X.δ j.succ) (X.δ (i.castLT )) = CategoryStruct.comp (X.δ i) (X.δ j)

                          The special case of the first simplicial identity

                          theorem CategoryTheory.SimplicialObject.δ_comp_δ_self' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 3)} {i : Fin (n + 2)} (H : j = i.castSucc) :
                          theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_le {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) :

                          The second simplicial identity

                          The first part of the third simplicial identity

                          theorem CategoryTheory.SimplicialObject.δ_comp_σ_self'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.castSucc) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :

                          The second part of the third simplicial identity

                          theorem CategoryTheory.SimplicialObject.δ_comp_σ_succ'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.succ) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                          theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) :

                          The fourth simplicial identity

                          theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) :
                          CategoryStruct.comp (X.σ j) (X.δ i) = CategoryStruct.comp (X.δ (i.pred )) (X.σ (j.castLT ))
                          theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk (n + 1))) Z) :
                          theorem CategoryTheory.SimplicialObject.σ_comp_σ {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i j : Fin (n + 1)} (H : i j) :

                          The fifth simplicial identity

                          Functor composition induces a functor on simplicial objects.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.SimplicialObject.whiskering_obj_obj_map (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor SimplexCategoryᵒᵖ C) {X✝ Y✝ : SimplexCategoryᵒᵖ} (f : X✝ Y✝) :
                              (((whiskering C D).obj H).obj F).map f = H.map (F.map f)
                              @[simp]
                              theorem CategoryTheory.SimplicialObject.whiskering_obj_map_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) {X✝ Y✝ : Functor SimplexCategoryᵒᵖ C} (α : X✝ Y✝) (X : SimplexCategoryᵒᵖ) :
                              (((whiskering C D).obj H).map α).app X = H.map (α.app X)
                              @[simp]
                              theorem CategoryTheory.SimplicialObject.whiskering_map_app_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (F : Functor SimplexCategoryᵒᵖ C) (c : SimplexCategoryᵒᵖ) :
                              (((whiskering C D).map τ).app F).app c = τ.app (F.obj c)

                              Truncated simplicial objects.

                              Equations
                                Instances For

                                  Functor composition induces a functor on truncated simplicial objects.

                                  Equations
                                    Instances For
                                      @[simp]
                                      @[simp]

                                      For X : Truncated C n and m ≤ n, X _⦋m⦌ₙ is the m-th term of X. The proof p : m ≤ n can also be provided using the syntax X _⦋m, p⦌ₙ.

                                      Equations
                                        Instances For
                                          def CategoryTheory.SimplicialObject.Truncated.trunc (C : Type u) [Category.{v, u} C] (n m : ) (h : m n := by omega) :

                                          Further truncation of truncated simplicial objects.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.SimplicialObject.Truncated.trunc_obj_map (C : Type u) [Category.{v, u} C] (n m : ) (h : m n := by omega) (G : Functor (SimplexCategory.Truncated n)ᵒᵖ C) {X✝ Y✝ : (SimplexCategory.Truncated m)ᵒᵖ} (f : X✝ Y✝) :
                                              ((trunc C n m h).obj G).map f = G.map ((SimplexCategory.Truncated.incl m n h).map f.unop).op
                                              @[simp]
                                              theorem CategoryTheory.SimplicialObject.Truncated.trunc_map_app (C : Type u) [Category.{v, u} C] (n m : ) (h : m n := by omega) {X✝ Y✝ : Functor (SimplexCategory.Truncated n)ᵒᵖ C} (α : X✝ Y✝) (X : (SimplexCategory.Truncated m)ᵒᵖ) :

                                              The truncation functor from simplicial objects to truncated simplicial objects.

                                              Equations
                                                Instances For

                                                  For all m ≤ n, truncation m factors through Truncated n.

                                                  Equations
                                                    Instances For
                                                      @[reducible, inline]

                                                      The n-skeleton as an endofunctor on SimplicialObject C.

                                                      Equations
                                                        Instances For
                                                          @[reducible, inline]

                                                          The n-coskeleton as an endofunctor on SimplicialObject C.

                                                          Equations
                                                            Instances For

                                                              The adjunction between the n-skeleton and n-truncation.

                                                              Equations
                                                                Instances For

                                                                  The adjunction between n-truncation and the n-coskeleton.

                                                                  Equations
                                                                    Instances For

                                                                      Since Truncated.inclusion is fully faithful, so is left Kan extension along it.

                                                                      Equations
                                                                        Instances For
                                                                          @[reducible, inline]

                                                                          The constant simplicial object is the constant functor.

                                                                          Equations
                                                                            Instances For

                                                                              The category of augmented simplicial objects, defined as a comma category.

                                                                              Equations
                                                                                Instances For
                                                                                  theorem CategoryTheory.SimplicialObject.Augmented.hom_ext {C : Type u} [Category.{v, u} C] {X Y : Augmented C} (f g : X Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) :
                                                                                  f = g

                                                                                  Drop the augmentation.

                                                                                  Equations
                                                                                    Instances For

                                                                                      The point of the augmentation.

                                                                                      Equations
                                                                                        Instances For

                                                                                          The functor from augmented objects to arrows.

                                                                                          Equations
                                                                                            Instances For
                                                                                              @[simp]

                                                                                              The compatibility of a morphism with the augmentation, on 0-simplices

                                                                                              Functor composition induces a functor on augmented simplicial objects.

                                                                                              Equations
                                                                                                Instances For

                                                                                                  Functor composition induces a functor on augmented simplicial objects.

                                                                                                  Equations
                                                                                                    Instances For
                                                                                                      @[simp]
                                                                                                      theorem CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_right (C : Type u) [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (η : X✝ Y✝) (A : Augmented C) :
                                                                                                      (((whiskering C D).map η).app A).right = η.app (point.obj A)
                                                                                                      @[simp]
                                                                                                      theorem CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_left (C : Type u) [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (η : X✝ Y✝) (A : Augmented C) :

                                                                                                      The constant augmented simplicial object functor.

                                                                                                      Equations
                                                                                                        Instances For
                                                                                                          @[simp]
                                                                                                          theorem CategoryTheory.SimplicialObject.Augmented.const_map_right {C : Type u} [Category.{v, u} C] {X✝ Y✝ : C} (f : X✝ Y✝) :

                                                                                                          Augment a simplicial object with an object.

                                                                                                          Equations
                                                                                                            Instances For
                                                                                                              @[simp]
                                                                                                              theorem CategoryTheory.SimplicialObject.augment_right {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp (X.map g₁.op) f = CategoryStruct.comp (X.map g₂.op) f) :
                                                                                                              (X.augment X₀ f w).right = X₀
                                                                                                              @[simp]
                                                                                                              theorem CategoryTheory.SimplicialObject.augment_left {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp (X.map g₁.op) f = CategoryStruct.comp (X.map g₂.op) f) :
                                                                                                              (X.augment X₀ f w).left = X

                                                                                                              Cosimplicial objects.

                                                                                                              Equations
                                                                                                                Instances For
                                                                                                                  @[simp]
                                                                                                                  theorem CategoryTheory.CosimplicialObject.comp_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Functor SimplexCategory C} (α : NatTrans X✝ Y✝) (β : NatTrans Y✝ Z✝) (X : SimplexCategory) :

                                                                                                                  X ^⦋n⦌ denotes the nth-term of the cosimplicial object X

                                                                                                                  Equations
                                                                                                                    Instances For
                                                                                                                      theorem CategoryTheory.CosimplicialObject.hom_ext {C : Type u} [Category.{v, u} C] {X Y : CosimplicialObject C} (f g : X Y) (h : ∀ (n : SimplexCategory), f.app n = g.app n) :
                                                                                                                      f = g

                                                                                                                      Coface maps for a cosimplicial object.

                                                                                                                      Equations
                                                                                                                        Instances For

                                                                                                                          Codegeneracy maps for a cosimplicial object.

                                                                                                                          Equations
                                                                                                                            Instances For

                                                                                                                              Isomorphisms from identities in ℕ.

                                                                                                                              Equations
                                                                                                                                Instances For

                                                                                                                                  The generic case of the first cosimplicial identity

                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_δ' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) :
                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_δ'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1 + 1)) Z) :
                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_δ'' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) :
                                                                                                                                  CategoryStruct.comp (X.δ (i.castLT )) (X.δ j.succ) = CategoryStruct.comp (X.δ j) (X.δ i)
                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_δ''_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1 + 1)) Z) :

                                                                                                                                  The special case of the first cosimplicial identity

                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_δ_self' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : j = i.castSucc) :
                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_le {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) :

                                                                                                                                  The second cosimplicial identity

                                                                                                                                  The first part of the third cosimplicial identity

                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_σ_self'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.castSucc) {Z : C} (h : X.obj (SimplexCategory.mk n) Z) :

                                                                                                                                  The second part of the third cosimplicial identity

                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_σ_succ'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.succ) {Z : C} (h : X.obj (SimplexCategory.mk n) Z) :
                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) :

                                                                                                                                  The fourth cosimplicial identity

                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) :
                                                                                                                                  CategoryStruct.comp (X.δ i) (X.σ j) = CategoryStruct.comp (X.σ (j.castLT )) (X.δ (i.pred ))
                                                                                                                                  theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1)) Z) :

                                                                                                                                  The fifth cosimplicial identity

                                                                                                                                  Functor composition induces a functor on cosimplicial objects.

                                                                                                                                  Equations
                                                                                                                                    Instances For
                                                                                                                                      @[simp]
                                                                                                                                      theorem CategoryTheory.CosimplicialObject.whiskering_map_app_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (F : Functor SimplexCategory C) (c : SimplexCategory) :
                                                                                                                                      (((whiskering C D).map τ).app F).app c = τ.app (F.obj c)
                                                                                                                                      @[simp]
                                                                                                                                      theorem CategoryTheory.CosimplicialObject.whiskering_obj_obj_map (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor SimplexCategory C) {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
                                                                                                                                      (((whiskering C D).obj H).obj F).map f = H.map (F.map f)
                                                                                                                                      @[simp]
                                                                                                                                      theorem CategoryTheory.CosimplicialObject.whiskering_obj_map_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) {X✝ Y✝ : Functor SimplexCategory C} (α : X✝ Y✝) (X : SimplexCategory) :
                                                                                                                                      (((whiskering C D).obj H).map α).app X = H.map (α.app X)

                                                                                                                                      Truncated cosimplicial objects.

                                                                                                                                      Equations
                                                                                                                                        Instances For

                                                                                                                                          Functor composition induces a functor on truncated cosimplicial objects.

                                                                                                                                          Equations
                                                                                                                                            Instances For
                                                                                                                                              @[simp]
                                                                                                                                              theorem CategoryTheory.CosimplicialObject.Truncated.whiskering_map_app_app (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (F : Functor (SimplexCategory.Truncated n) C) (c : SimplexCategory.Truncated n) :
                                                                                                                                              (((whiskering C D).map τ).app F).app c = τ.app (F.obj c)
                                                                                                                                              @[simp]
                                                                                                                                              theorem CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_map_app (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) {X✝ Y✝ : Functor (SimplexCategory.Truncated n) C} (α : X✝ Y✝) (X : SimplexCategory.Truncated n) :
                                                                                                                                              (((whiskering C D).obj H).map α).app X = H.map (α.app X)
                                                                                                                                              @[simp]
                                                                                                                                              theorem CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_obj_map (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor (SimplexCategory.Truncated n) C) {X✝ Y✝ : SimplexCategory.Truncated n} (f : X✝ Y✝) :
                                                                                                                                              (((whiskering C D).obj H).obj F).map f = H.map (F.map f)

                                                                                                                                              For X : Truncated C n and m ≤ n, X ^⦋m⦌ₙ is the m-th term of X. The proof p : m ≤ n can also be provided using the syntax X ^⦋m, p⦌ₙ.

                                                                                                                                              Equations
                                                                                                                                                Instances For
                                                                                                                                                  def CategoryTheory.CosimplicialObject.Truncated.trunc (C : Type u) [Category.{v, u} C] (n m : ) (h : m n := by omega) :

                                                                                                                                                  Further truncation of truncated cosimplicial objects.

                                                                                                                                                  Equations
                                                                                                                                                    Instances For

                                                                                                                                                      The truncation functor from cosimplicial objects to truncated cosimplicial objects.

                                                                                                                                                      Equations
                                                                                                                                                        Instances For

                                                                                                                                                          For all m ≤ n, truncation m factors through Truncated n.

                                                                                                                                                          Equations
                                                                                                                                                            Instances For
                                                                                                                                                              @[reducible, inline]

                                                                                                                                                              The constant cosimplicial object.

                                                                                                                                                              Equations
                                                                                                                                                                Instances For

                                                                                                                                                                  Augmented cosimplicial objects.

                                                                                                                                                                  Equations
                                                                                                                                                                    Instances For
                                                                                                                                                                      theorem CategoryTheory.CosimplicialObject.Augmented.hom_ext {C : Type u} [Category.{v, u} C] {X Y : Augmented C} (f g : X Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) :
                                                                                                                                                                      f = g

                                                                                                                                                                      Drop the augmentation.

                                                                                                                                                                      Equations
                                                                                                                                                                        Instances For

                                                                                                                                                                          The point of the augmentation.

                                                                                                                                                                          Equations
                                                                                                                                                                            Instances For

                                                                                                                                                                              The functor from augmented objects to arrows.

                                                                                                                                                                              Equations
                                                                                                                                                                                Instances For
                                                                                                                                                                                  @[simp]

                                                                                                                                                                                  Functor composition induces a functor on augmented cosimplicial objects.

                                                                                                                                                                                  Equations
                                                                                                                                                                                    Instances For

                                                                                                                                                                                      Functor composition induces a functor on augmented cosimplicial objects.

                                                                                                                                                                                      Equations
                                                                                                                                                                                        Instances For
                                                                                                                                                                                          @[simp]
                                                                                                                                                                                          theorem CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_left (C : Type u) [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (η : X✝ Y✝) (A : Augmented C) :
                                                                                                                                                                                          (((whiskering C D).map η).app A).left = η.app (point.obj A)
                                                                                                                                                                                          @[simp]

                                                                                                                                                                                          The constant augmented cosimplicial object functor.

                                                                                                                                                                                          Equations
                                                                                                                                                                                            Instances For
                                                                                                                                                                                              @[simp]
                                                                                                                                                                                              theorem CategoryTheory.CosimplicialObject.Augmented.const_map_left {C : Type u} [Category.{v, u} C] {X✝ Y✝ : C} (f : X✝ Y✝) :
                                                                                                                                                                                              (const.map f).left = f

                                                                                                                                                                                              Augment a cosimplicial object with an object.

                                                                                                                                                                                              Equations
                                                                                                                                                                                                Instances For
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem CategoryTheory.CosimplicialObject.augment_left {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) :
                                                                                                                                                                                                  (X.augment X₀ f w).left = X₀
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem CategoryTheory.CosimplicialObject.augment_hom_app {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) (x✝ : SimplexCategory) :
                                                                                                                                                                                                  (X.augment X₀ f w).hom.app x✝ = CategoryStruct.comp f (X.map ((SimplexCategory.mk 0).const x✝ 0))
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem CategoryTheory.CosimplicialObject.augment_right {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) :
                                                                                                                                                                                                  (X.augment X₀ f w).right = X

                                                                                                                                                                                                  The anti-equivalence between simplicial objects and cosimplicial objects.

                                                                                                                                                                                                  Equations
                                                                                                                                                                                                    Instances For

                                                                                                                                                                                                      The anti-equivalence between cosimplicial objects and simplicial objects.

                                                                                                                                                                                                      Equations
                                                                                                                                                                                                        Instances For

                                                                                                                                                                                                          Construct an augmented cosimplicial object in the opposite category from an augmented simplicial object.

                                                                                                                                                                                                          Equations
                                                                                                                                                                                                            Instances For

                                                                                                                                                                                                              Construct an augmented simplicial object from an augmented cosimplicial object in the opposite category.

                                                                                                                                                                                                              Equations
                                                                                                                                                                                                                Instances For

                                                                                                                                                                                                                  Converting an augmented simplicial object to an augmented cosimplicial object and back is isomorphic to the given object.

                                                                                                                                                                                                                  Equations
                                                                                                                                                                                                                    Instances For

                                                                                                                                                                                                                      Converting an augmented cosimplicial object to an augmented simplicial object and back is isomorphic to the given object.

                                                                                                                                                                                                                      Equations
                                                                                                                                                                                                                        Instances For

                                                                                                                                                                                                                          A functorial version of Cosimplicial_object.Augmented.leftOp.

                                                                                                                                                                                                                          Equations
                                                                                                                                                                                                                            Instances For

                                                                                                                                                                                                                              The contravariant categorical equivalence between augmented simplicial objects and augmented cosimplicial objects in the opposite category.

                                                                                                                                                                                                                              Equations
                                                                                                                                                                                                                                Instances For