Documentation

Mathlib.AlgebraicTopology.TopologicalSimplex

Topological simplices #

We define the natural functor from SimplexCategory to TopCat sending ⦋n⦌ to the topological n-simplex. This is used to define TopCat.toSSet in AlgebraicTopology.SingularSet.

The topological simplex associated to x : SimplexCategory. This is the object part of the functor SimplexCategory.toTop.

Equations
    Instances For
      theorem SimplexCategory.toTopObj.ext {x : SimplexCategory} (f g : x.toTopObj) :
      f = gf = g
      theorem SimplexCategory.toTopObj.ext_iff {x : SimplexCategory} {f g : x.toTopObj} :
      f = g f = g
      @[simp]
      theorem SimplexCategory.toTopObj_zero_apply_zero (f : (mk 0).toTopObj) :
      f 0 = 1
      theorem SimplexCategory.toTopObj_one_add_eq_one (f : (mk 1).toTopObj) :
      f 0 + f 1 = 1
      theorem SimplexCategory.toTopObj_one_coe_add_coe_eq_one (f : (mk 1).toTopObj) :
      (f 0) + (f 1) = 1

      The one-dimensional topological simplex is homeomorphic to the unit interval.

      Equations
        Instances For
          def SimplexCategory.toTopMap {x y : SimplexCategory} (f : x y) (g : x.toTopObj) :

          A morphism in SimplexCategory induces a map on the associated topological spaces.

          Equations
            Instances For
              @[simp]
              theorem SimplexCategory.coe_toTopMap {x y : SimplexCategory} (f : x y) (g : x.toTopObj) (i : CategoryTheory.ToType y) :
              (toTopMap f g) i = j : (fun (X : SimplexCategory) => Fin (X.len + 1)) x with (CategoryTheory.ConcreteCategory.hom f) j = i, g j

              The functor associating the topological n-simplex to ⦋n⦌ : SimplexCategory.

              Equations
                Instances For
                  @[simp]
                  theorem SimplexCategory.toTop_map {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
                  toTop.map f = TopCat.ofHom { toFun := toTopMap f, continuous_toFun := }