Documentation

Mathlib.Analysis.Normed.Group.SemiNormedGrp

The category of seminormed groups #

We define SemiNormedGrp, the category of seminormed groups and normed group homs between them, as well as SemiNormedGrp₁, the subcategory of norm non-increasing morphisms.

structure SemiNormedGrp :
Type (u + 1)

The category of seminormed abelian groups and bounded group homomorphisms.

Instances For
    @[reducible, inline]

    Construct a bundled SemiNormedGrp from the underlying type and typeclass.

    Equations
      Instances For
        structure SemiNormedGrp.Hom (M N : SemiNormedGrp) :

        The type of morphisms in SemiNormedGrp

        Instances For
          theorem SemiNormedGrp.Hom.ext {M N : SemiNormedGrp} {x y : M.Hom N} (hom' : x.hom' = y.hom') :
          x = y
          theorem SemiNormedGrp.Hom.ext_iff {M N : SemiNormedGrp} {x y : M.Hom N} :
          x = y x.hom' = y.hom'
          @[reducible, inline]

          Turn a morphism in SemiNormedGrp back into a NormedAddGroupHom.

          Equations
            Instances For
              @[reducible, inline]

              Typecheck a NormedAddGroupHom as a morphism in SemiNormedGrp.

              Equations
                Instances For

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      theorem SemiNormedGrp.ext {M N : SemiNormedGrp} {f₁ f₂ : M N} (h : ∀ (x : M.carrier), (CategoryTheory.ConcreteCategory.hom f₁) x = (CategoryTheory.ConcreteCategory.hom f₂) x) :
                      f₁ = f₂
                      theorem SemiNormedGrp.ext_iff {M N : SemiNormedGrp} {f₁ f₂ : M N} :
                      theorem SemiNormedGrp.hom_ext {M N : SemiNormedGrp} {f g : M N} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem SemiNormedGrp.hom_ext_iff {M N : SemiNormedGrp} {f g : M N} :
                      @[simp]
                      theorem SemiNormedGrp.ofHom_hom {M N : SemiNormedGrp} (f : M N) :
                      Equations
                        instance SemiNormedGrp.Hom.add {M N : SemiNormedGrp} :
                        Add (M N)
                        Equations
                          @[simp]
                          theorem SemiNormedGrp.hom_add {V W : SemiNormedGrp} (f g : V W) :
                          instance SemiNormedGrp.Hom.neg {M N : SemiNormedGrp} :
                          Neg (M N)
                          Equations
                            @[simp]
                            theorem SemiNormedGrp.hom_neg {V W : SemiNormedGrp} (f : V W) :
                            instance SemiNormedGrp.Hom.sub {M N : SemiNormedGrp} :
                            Sub (M N)
                            Equations
                              @[simp]
                              theorem SemiNormedGrp.hom_sub {V W : SemiNormedGrp} (f g : V W) :
                              Equations
                                @[simp]
                                theorem SemiNormedGrp.hom_nsum {V W : SemiNormedGrp} (n : ) (f : V W) :
                                Hom.hom (n f) = n Hom.hom f
                                Equations
                                  @[simp]
                                  theorem SemiNormedGrp.hom_zsum {V W : SemiNormedGrp} (n : ) (f : V W) :
                                  Hom.hom (n f) = n Hom.hom f
                                  structure SemiNormedGrp₁ :
                                  Type (u + 1)

                                  SemiNormedGrp₁ is a type synonym for SemiNormedGrp, which we shall equip with the category structure consisting only of the norm non-increasing maps.

                                  Instances For
                                    @[reducible, inline]

                                    Construct a bundled SemiNormedGrp₁ from the underlying type and typeclass.

                                    Equations
                                      Instances For

                                        The type of morphisms in SemiNormedGrp₁

                                        Instances For
                                          theorem SemiNormedGrp₁.Hom.ext_iff {M N : SemiNormedGrp₁} {x y : M.Hom N} :
                                          x = y x.hom' = y.hom'
                                          theorem SemiNormedGrp₁.Hom.ext {M N : SemiNormedGrp₁} {x y : M.Hom N} (hom' : x.hom' = y.hom') :
                                          x = y
                                          @[reducible, inline]

                                          Turn a morphism in SemiNormedGrp₁ back into a norm-nonincreasing NormedAddGroupHom.

                                          Equations
                                            Instances For
                                              @[reducible, inline]

                                              Promote a NormedAddGroupHom to a morphism in SemiNormedGrp₁.

                                              Equations
                                                Instances For

                                                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                                                  Equations
                                                    Instances For
                                                      Equations

                                                        The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                                                        theorem SemiNormedGrp₁.ext {M N : SemiNormedGrp₁} {f₁ f₂ : M N} (h : ∀ (x : M.carrier), (Hom.hom f₁) x = (Hom.hom f₂) x) :
                                                        f₁ = f₂
                                                        theorem SemiNormedGrp₁.ext_iff {M N : SemiNormedGrp₁} {f₁ f₂ : M N} :
                                                        f₁ = f₂ ∀ (x : M.carrier), (Hom.hom f₁) x = (Hom.hom f₂) x
                                                        @[simp]
                                                        theorem SemiNormedGrp₁.hom_comp {M N O : SemiNormedGrp₁} (f : M N) (g : N O) :
                                                        theorem SemiNormedGrp₁.comp_apply {M N O : SemiNormedGrp₁} (f : M N) (g : N O) (r : M.carrier) :
                                                        theorem SemiNormedGrp₁.hom_ext {M N : SemiNormedGrp₁} {f g : M N} (hf : Hom.hom f = Hom.hom g) :
                                                        f = g
                                                        @[simp]
                                                        theorem SemiNormedGrp₁.mkHom_hom {M N : SemiNormedGrp₁} (f : M N) :
                                                        mkHom (Hom.hom f) = f
                                                        @[simp]
                                                        theorem SemiNormedGrp₁.inv_hom_apply {M N : SemiNormedGrp₁} (e : M N) (r : M.carrier) :
                                                        (Hom.hom e.inv) ((Hom.hom e.hom) r) = r
                                                        @[simp]
                                                        theorem SemiNormedGrp₁.hom_inv_apply {M N : SemiNormedGrp₁} (e : M N) (s : N.carrier) :
                                                        (Hom.hom e.hom) ((Hom.hom e.inv) s) = s

                                                        Promote an isomorphism in SemiNormedGrp to an isomorphism in SemiNormedGrp₁.

                                                        Equations
                                                          Instances For
                                                            theorem SemiNormedGrp₁.coe_comp {M N K : SemiNormedGrp₁} (f : M N) (g : N K) :
                                                            @[simp]
                                                            theorem SemiNormedGrp₁.zero_apply {V W : SemiNormedGrp₁} (x : V.carrier) :
                                                            (Hom.hom 0) x = 0