Documentation

Mathlib.CategoryTheory.Abelian.Exact

Exact sequences in abelian categories #

In an abelian category, we get several interesting results related to exactness which are not true in more general settings.

Main results #

In an abelian category, a short complex S is exact iff imageSubobject S.f = kernelSubobject S.g.

If (f, g) is exact, then Abelian.image.ι S.f is a kernel of S.g.

Equations
    Instances For

      If (f, g) is exact, then image.ι f is a kernel of g.

      Equations
        Instances For

          If (f, g) is exact, then Abelian.coimage.π g is a cokernel of f.

          Equations
            Instances For

              If (f, g) is exact, then factorThruImage g is a cokernel of f.

              Equations
                Instances For
                  theorem CategoryTheory.ShortComplex.exact_kernel {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) :
                  { X₁ := Limits.kernel f, X₂ := X, X₃ := Y, f := Limits.kernel.ι f, g := f, zero := }.Exact
                  theorem CategoryTheory.ShortComplex.exact_cokernel {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) :
                  { X₁ := X, X₂ := Y, X₃ := Limits.cokernel f, f := f, g := Limits.cokernel.π f, zero := }.Exact
                  theorem CategoryTheory.ShortComplex.exact_iff_exact_image_ι {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] (S : ShortComplex C) :
                  S.Exact { X₁ := Abelian.image S.f, X₂ := S.X₂, X₃ := S.X₃, f := Abelian.image.ι S.f, g := S.g, zero := }.Exact
                  theorem CategoryTheory.ShortComplex.exact_iff_exact_coimage_π {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] (S : ShortComplex C) :
                  S.Exact { X₁ := S.X₁, X₂ := S.X₂, X₃ := Abelian.coimage S.g, f := S.f, g := Abelian.coimage.π S.g, zero := }.Exact
                  theorem CategoryTheory.Abelian.tfae_mono {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) (Z : C) :
                  [Mono f, Limits.kernel.ι f = 0, { X₁ := Z, X₂ := X, X₃ := Y, f := 0, g := f, zero := }.Exact].TFAE
                  theorem CategoryTheory.Abelian.tfae_epi {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) (Z : C) :
                  [Epi f, Limits.cokernel.π f = 0, { X₁ := X, X₂ := Y, X₃ := Z, f := f, g := 0, zero := }.Exact].TFAE

                  A functor which preserves exactness preserves monomorphisms.

                  A functor which preserves exactness preserves epimorphisms.

                  A functor which preserves the exactness of short complexes preserves homology.

                  A functor preserving zero morphisms, monos, and cokernels preserves homology.

                  A functor preserving zero morphisms, epis, and kernels preserves homology.