Documentation

Mathlib.CategoryTheory.Abelian.Injective.Resolution

Abelian categories with enough injectives have injective resolutions #

Main results #

When the underlying category is abelian:

Auxiliary construction for desc.

Equations
    Instances For
      theorem CategoryTheory.InjectiveResolution.exact₀ {C : Type u} [Category.{v, u} C] [Abelian C] {Z : C} (I : InjectiveResolution Z) :
      { X₁ := ((CochainComplex.single₀ C).obj Z).X 0, X₂ := I.cocomplex.X 0, X₃ := I.cocomplex.X 1, f := I.ι.f 0, g := I.cocomplex.d 0 1, zero := }.Exact

      Auxiliary construction for desc.

      Equations
        Instances For
          def CategoryTheory.InjectiveResolution.descFSucc {C : Type u} [Category.{v, u} C] [Abelian C] {Y Z : C} (I : InjectiveResolution Y) (J : InjectiveResolution Z) (n : ) (g : J.cocomplex.X n I.cocomplex.X n) (g' : J.cocomplex.X (n + 1) I.cocomplex.X (n + 1)) (w : CategoryStruct.comp (J.cocomplex.d n (n + 1)) g' = CategoryStruct.comp g (I.cocomplex.d n (n + 1))) :
          (g'' : J.cocomplex.X (n + 2) I.cocomplex.X (n + 2)) ×' CategoryStruct.comp (J.cocomplex.d (n + 1) (n + 2)) g'' = CategoryStruct.comp g' (I.cocomplex.d (n + 1) (n + 2))

          Auxiliary construction for desc.

          Equations
            Instances For

              A morphism in C descends to a chain map between injective resolutions.

              Equations
                Instances For
                  @[simp]

                  The resolution maps intertwine the descent of a morphism and that morphism.

                  An auxiliary definition for descHomotopyZero.

                  Equations
                    Instances For

                      An auxiliary definition for descHomotopyZero.

                      Equations
                        Instances For
                          def CategoryTheory.InjectiveResolution.descHomotopyZeroSucc {C : Type u} [Category.{v, u} C] [Abelian C] {Y Z : C} {I : InjectiveResolution Y} {J : InjectiveResolution Z} (f : I.cocomplex J.cocomplex) (n : ) (g : I.cocomplex.X (n + 1) J.cocomplex.X n) (g' : I.cocomplex.X (n + 2) J.cocomplex.X (n + 1)) (w : f.f (n + 1) = CategoryStruct.comp (I.cocomplex.d (n + 1) (n + 2)) g' + CategoryStruct.comp g (J.cocomplex.d n (n + 1))) :
                          I.cocomplex.X (n + 3) J.cocomplex.X (n + 2)

                          An auxiliary definition for descHomotopyZero.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.InjectiveResolution.comp_descHomotopyZeroSucc {C : Type u} [Category.{v, u} C] [Abelian C] {Y Z : C} {I : InjectiveResolution Y} {J : InjectiveResolution Z} (f : I.cocomplex J.cocomplex) (n : ) (g : I.cocomplex.X (n + 1) J.cocomplex.X n) (g' : I.cocomplex.X (n + 2) J.cocomplex.X (n + 1)) (w : f.f (n + 1) = CategoryStruct.comp (I.cocomplex.d (n + 1) (n + 2)) g' + CategoryStruct.comp g (J.cocomplex.d n (n + 1))) :
                              CategoryStruct.comp (I.cocomplex.d (n + 2) (n + 3)) (descHomotopyZeroSucc f n g g' w) = f.f (n + 2) - CategoryStruct.comp g' (J.cocomplex.d (n + 1) (n + 2))
                              @[simp]
                              theorem CategoryTheory.InjectiveResolution.comp_descHomotopyZeroSucc_assoc {C : Type u} [Category.{v, u} C] [Abelian C] {Y Z : C} {I : InjectiveResolution Y} {J : InjectiveResolution Z} (f : I.cocomplex J.cocomplex) (n : ) (g : I.cocomplex.X (n + 1) J.cocomplex.X n) (g' : I.cocomplex.X (n + 2) J.cocomplex.X (n + 1)) (w : f.f (n + 1) = CategoryStruct.comp (I.cocomplex.d (n + 1) (n + 2)) g' + CategoryStruct.comp g (J.cocomplex.d n (n + 1))) {Z✝ : C} (h : J.cocomplex.X (n + 2) Z✝) :

                              Any descent of the zero morphism is homotopic to zero.

                              Equations
                                Instances For

                                  Two descents of the same morphism are homotopic.

                                  Equations
                                    Instances For

                                      The descent of the identity morphism is homotopic to the identity cochain map.

                                      Equations
                                        Instances For

                                          The descent of a composition is homotopic to the composition of the descents.

                                          Equations
                                            Instances For

                                              Any two injective resolutions are homotopy equivalent.

                                              Equations
                                                Instances For
                                                  @[reducible, inline]

                                                  An arbitrarily chosen injective resolution of an object.

                                                  Equations
                                                    Instances For

                                                      Taking injective resolutions is functorial, if considered with target the homotopy category (-indexed cochain complexes and chain maps up to homotopy).

                                                      Equations
                                                        Instances For

                                                          If I : InjectiveResolution X, then the chosen (injectiveResolutions C).obj X is isomorphic (in the homotopy category) to I.cocomplex.

                                                          Equations
                                                            Instances For
                                                              theorem CategoryTheory.exact_f_d {C : Type u} [Category.{v, u} C] [Abelian C] [EnoughInjectives C] {X Y : C} (f : X Y) :
                                                              { X₁ := X, X₂ := Y, X₃ := Injective.syzygies f, f := f, g := Injective.d f, zero := }.Exact

                                                              Our goal is to define InjectiveResolution.of Z : InjectiveResolution Z. The 0-th object in this resolution will just be Injective.under Z, i.e. an arbitrarily chosen injective object with a map from Z. After that, we build the n+1-st object as Injective.syzygies applied to the previously constructed morphism, and the map from the n-th object as Injective.d.

                                                              Auxiliary definition for InjectiveResolution.of.

                                                              Equations
                                                                Instances For
                                                                  theorem CategoryTheory.InjectiveResolution.of_def {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] [EnoughInjectives C] (Z : C) :
                                                                  of Z = { cocomplex := ofCocomplex Z, injective := , hasHomology := , ι := ((ofCocomplex Z).fromSingle₀Equiv Z).symm Injective.ι Z, , quasiIso := }
                                                                  @[irreducible]

                                                                  In any abelian category with enough injectives, InjectiveResolution.of Z constructs an injective resolution of the object Z.

                                                                  Equations
                                                                    Instances For