Documentation

Mathlib.CategoryTheory.Closed.FunctorCategory.Groupoid

Functors from a groupoid into a monoidal closed category form a monoidal closed category. #

(Using the pointwise monoidal structure on the functor category.)

Auxiliary definition for CategoryTheory.Functor.closed. The internal hom functor F ⟶[C] -

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.closedIhom_obj_map {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F Y : Functor D C) {X✝ Y✝ : D} (f : X✝ Y✝) :
      @[simp]
      theorem CategoryTheory.Functor.closedIhom_map_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F : Functor D C) {X✝ Y✝ : Functor D C} (g : X✝ Y✝) (X : D) :
      (F.closedIhom.map g).app X = (ihom (F.obj X)).map (g.app X)
      @[simp]
      theorem CategoryTheory.Functor.closedIhom_obj_obj {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F Y : Functor D C) (X : D) :
      (F.closedIhom.obj Y).obj X = (ihom (F.obj X)).obj (Y.obj X)

      Auxiliary definition for CategoryTheory.Functor.closed. The unit for the adjunction (tensorLeft F) ⊣ (ihom F).

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.closedUnit_app_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F G : Functor D C) (X : D) :
          (F.closedUnit.app G).app X = (ihom.coev (F.obj X)).app (G.obj X)

          Auxiliary definition for CategoryTheory.Functor.closed. The counit for the adjunction (tensorLeft F) ⊣ (ihom F).

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Functor.closedCounit_app_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F G : Functor D C) (X : D) :
              (F.closedCounit.app G).app X = (ihom.ev (F.obj X)).app (G.obj X)

              If C is a monoidal closed category and D is a groupoid, then every functor F : D ⥤ C is closed in the functor category F : D ⥤ C with the pointwise monoidal structure.

              Equations

                If C is a monoidal closed category and D is groupoid, then the functor category D ⥤ C, with the pointwise monoidal structure, is monoidal closed.

                Equations
                  @[simp]
                  theorem CategoryTheory.Functor.monoidalClosed_closed_adj {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (X : Functor D C) :
                  Closed.adj = { unit := X.closedUnit, counit := X.closedCounit, left_triangle_components := , right_triangle_components := }
                  theorem CategoryTheory.Functor.ihom_map {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F : Functor D C) {G H : Functor D C} (f : G H) :
                  (ihom F).map f = F.closedIhom.map f