Documentation

Mathlib.CategoryTheory.DifferentialObject

Differential objects in a category. #

A differential object in a category with zero morphisms and a shift is an object X equipped with a morphism d : obj ⟶ obj⟦1⟧, such that d^2 = 0.

We build the category of differential objects, and some basic constructions such as the forgetful functor, zero morphisms and zero objects, and the shift functor on differential objects.

A differential object in a category with zero morphisms and a shift is an object obj equipped with a morphism d : obj ⟶ obj⟦1⟧, such that d^2 = 0.

Instances For

    A morphism of differential objects is a morphism commuting with the differentials.

    Instances For
      theorem CategoryTheory.DifferentialObject.Hom.ext_iff {S : Type u_1} {inst✝ : AddMonoidWithOne S} {C : Type u} {inst✝¹ : Category.{v, u} C} {inst✝² : Limits.HasZeroMorphisms C} {inst✝³ : HasShift C S} {X Y : DifferentialObject S C} {x y : X.Hom Y} :
      x = y x.f = y.f
      theorem CategoryTheory.DifferentialObject.Hom.ext {S : Type u_1} {inst✝ : AddMonoidWithOne S} {C : Type u} {inst✝¹ : Category.{v, u} C} {inst✝² : Limits.HasZeroMorphisms C} {inst✝³ : HasShift C S} {X Y : DifferentialObject S C} {x y : X.Hom Y} (f : x.f = y.f) :
      x = y

      The identity morphism of a differential object.

      Equations
        Instances For

          The composition of morphisms of differential objects.

          Equations
            Instances For
              theorem CategoryTheory.DifferentialObject.ext {S : Type u_1} [AddMonoidWithOne S] {C : Type u} [Category.{v, u} C] [Limits.HasZeroMorphisms C] [HasShift C S] {A B : DifferentialObject S C} {f g : A B} (w : f.f = g.f := by cat_disch) :
              f = g

              The forgetful functor taking a differential object to its underlying object.

              Equations
                Instances For

                  An isomorphism of differential objects gives an isomorphism of the underlying objects.

                  Equations
                    Instances For

                      An isomorphism of differential objects can be constructed from an isomorphism of the underlying objects that commutes with the differentials.

                      Equations
                        Instances For

                          A functor F : C ⥤ D which commutes with shift functors on C and D and preserves zero morphisms can be lifted to a functor DifferentialObject S C ⥤ DifferentialObject S D.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Functor.mapDifferentialObject_map_f {S : Type u_1} [AddMonoidWithOne S] {C : Type u} [Category.{v, u} C] [Limits.HasZeroMorphisms C] [HasShift C S] (D : Type u') [Category.{v', u'} D] [Limits.HasZeroMorphisms D] [HasShift D S] (F : Functor C D) (η : (shiftFunctor C 1).comp F F.comp (shiftFunctor D 1)) (hF : ∀ (c c' : C), F.map 0 = 0) {X✝ Y✝ : DifferentialObject S C} (f : X✝ Y✝) :
                              ((mapDifferentialObject D F η hF).map f).f = F.map f.f
                              @[simp]
                              theorem CategoryTheory.Functor.mapDifferentialObject_obj_d {S : Type u_1} [AddMonoidWithOne S] {C : Type u} [Category.{v, u} C] [Limits.HasZeroMorphisms C] [HasShift C S] (D : Type u') [Category.{v', u'} D] [Limits.HasZeroMorphisms D] [HasShift D S] (F : Functor C D) (η : (shiftFunctor C 1).comp F F.comp (shiftFunctor D 1)) (hF : ∀ (c c' : C), F.map 0 = 0) (X : DifferentialObject S C) :
                              ((mapDifferentialObject D F η hF).obj X).d = CategoryStruct.comp (F.map X.d) (η.app X.obj)
                              @[simp]
                              theorem CategoryTheory.Functor.mapDifferentialObject_obj_obj {S : Type u_1} [AddMonoidWithOne S] {C : Type u} [Category.{v, u} C] [Limits.HasZeroMorphisms C] [HasShift C S] (D : Type u') [Category.{v', u'} D] [Limits.HasZeroMorphisms D] [HasShift D S] (F : Functor C D) (η : (shiftFunctor C 1).comp F F.comp (shiftFunctor D 1)) (hF : ∀ (c c' : C), F.map 0 = 0) (X : DifferentialObject S C) :
                              ((mapDifferentialObject D F η hF).obj X).obj = F.obj X.obj
                              @[reducible, inline]
                              abbrev CategoryTheory.DifferentialObject.HomSubtype (S : Type u_1) [AddMonoidWithOne S] (C : Type (u + 1)) [LargeCategory C] [Limits.HasZeroMorphisms C] {FC : CCType u_2} {CC : CType u_3} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] [HasShift C S] (X Y : DifferentialObject S C) :
                              Type u_2

                              The type of C-morphisms that can be lifted back to morphisms in the category DifferentialObject.

                              Equations
                                Instances For
                                  instance CategoryTheory.DifferentialObject.instFunLikeHomSubtypeObj (S : Type u_1) [AddMonoidWithOne S] (C : Type (u + 1)) [LargeCategory C] [Limits.HasZeroMorphisms C] {FC : CCType u_2} {CC : CType u_3} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] [HasShift C S] (X Y : DifferentialObject S C) :
                                  FunLike (HomSubtype S C X Y) (CC X.obj) (CC Y.obj)
                                  Equations
                                    instance CategoryTheory.DifferentialObject.concreteCategoryOfDifferentialObjects (S : Type u_1) [AddMonoidWithOne S] (C : Type (u + 1)) [LargeCategory C] [Limits.HasZeroMorphisms C] {FC : CCType u_2} {CC : CType u_3} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] [HasShift C S] :
                                    Equations

                                      The category of differential objects itself has a shift functor.

                                      The shift functor on DifferentialObject S C is additive.

                                      Equations
                                        Instances For

                                          The shift by zero is naturally isomorphic to the identity.

                                          Equations
                                            Instances For