Documentation

Mathlib.CategoryTheory.Limits.Opposites

Limits in C give colimits in Cᵒᵖ. #

We also give special cases for (co)products, (co)equalizers, and pullbacks / pushouts.

Turn a colimit for F : J ⥤ Cᵒᵖ into a limit for F.leftOp : Jᵒᵖ ⥤ C.

Equations
    Instances For

      Turn a limit of F : J ⥤ Cᵒᵖ into a colimit of F.leftOp : Jᵒᵖ ⥤ C.

      Equations
        Instances For

          Turn a colimit for F : Jᵒᵖ ⥤ C into a limit for F.rightOp : J ⥤ Cᵒᵖ.

          Equations
            Instances For

              Turn a limit for F : Jᵒᵖ ⥤ C into a colimit for F.rightOp : J ⥤ Cᵒᵖ.

              Equations
                Instances For

                  Turn a colimit for F : Jᵒᵖ ⥤ Cᵒᵖ into a limit for F.unop : J ⥤ C.

                  Equations
                    Instances For

                      Turn a limit of F : Jᵒᵖ ⥤ Cᵒᵖ into a colimit of F.unop : J ⥤ C.

                      Equations
                        Instances For

                          Turn a colimit for F.leftOp : Jᵒᵖ ⥤ C into a limit for F : J ⥤ Cᵒᵖ.

                          Equations
                            Instances For

                              Turn a limit of F.leftOp : Jᵒᵖ ⥤ C into a colimit of F : J ⥤ Cᵒᵖ.

                              Equations
                                Instances For

                                  Turn a colimit for F.rightOp : J ⥤ Cᵒᵖ into a limit for F : Jᵒᵖ ⥤ C.

                                  Equations
                                    Instances For

                                      Turn a limit for F.rightOp : J ⥤ Cᵒᵖ into a colimit for F : Jᵒᵖ ⥤ C.

                                      Equations
                                        Instances For

                                          Turn a colimit for F.unop : J ⥤ C into a limit for F : Jᵒᵖ ⥤ Cᵒᵖ.

                                          Equations
                                            Instances For

                                              Turn a limit for F.unop : J ⥤ C into a colimit for F : Jᵒᵖ ⥤ Cᵒᵖ.

                                              Equations
                                                Instances For

                                                  Turn a limit for F.leftOp : Jᵒᵖ ⥤ C into a colimit for F : J ⥤ Cᵒᵖ.

                                                  Equations
                                                    Instances For

                                                      Turn a colimit for F.leftOp : Jᵒᵖ ⥤ C into a limit for F : J ⥤ Cᵒᵖ.

                                                      Equations
                                                        Instances For

                                                          Turn a limit for F.rightOp : J ⥤ Cᵒᵖ into a colimit for F : Jᵒᵖ ⥤ C.

                                                          Equations
                                                            Instances For

                                                              Turn a colimit for F.rightOp : J ⥤ Cᵒᵖ into a limit for F : Jᵒᵖ ⥤ C.

                                                              Equations
                                                                Instances For

                                                                  Turn a limit for F.unop : J ⥤ C into a colimit for F : Jᵒᵖ ⥤ Cᵒᵖ.

                                                                  Equations
                                                                    Instances For

                                                                      Turn a colimit for F.unop : J ⥤ C into a limit for F : Jᵒᵖ ⥤ Cᵒᵖ.

                                                                      Equations
                                                                        Instances For

                                                                          Turn a limit for F : J ⥤ Cᵒᵖ into a colimit for F.leftOp : Jᵒᵖ ⥤ C.

                                                                          Equations
                                                                            Instances For

                                                                              Turn a colimit for F : J ⥤ Cᵒᵖ into a limit for F.leftOp : Jᵒᵖ ⥤ C.

                                                                              Equations
                                                                                Instances For

                                                                                  Turn a limit for F : Jᵒᵖ ⥤ C into a colimit for F.rightOp : J ⥤ Cᵒᵖ.

                                                                                  Equations
                                                                                    Instances For

                                                                                      Turn a colimit for F : Jᵒᵖ ⥤ C into a limit for F.rightOp : J ⥤ Cᵒᵖ.

                                                                                      Equations
                                                                                        Instances For

                                                                                          Turn a limit for F : Jᵒᵖ ⥤ Cᵒᵖ into a colimit for F.unop : J ⥤ C.

                                                                                          Equations
                                                                                            Instances For

                                                                                              Turn a colimit for F : Jᵒᵖ ⥤ Cᵒᵖ into a limit for F.unop : J ⥤ C.

                                                                                              Equations
                                                                                                Instances For

                                                                                                  If F.leftOp : Jᵒᵖ ⥤ C has a colimit, we can construct a limit for F : J ⥤ Cᵒᵖ.

                                                                                                  The limit of F.op is the opposite of colimit F.

                                                                                                  Equations
                                                                                                    Instances For

                                                                                                      The limit of F.leftOp is the unopposite of colimit F.

                                                                                                      Equations
                                                                                                        Instances For

                                                                                                          The limit of F.rightOp is the opposite of colimit F.

                                                                                                          Equations
                                                                                                            Instances For

                                                                                                              The limit of F.unop is the unopposite of colimit F.

                                                                                                              Equations
                                                                                                                Instances For

                                                                                                                  If C has colimits of shape Jᵒᵖ, we can construct limits in Cᵒᵖ of shape J.

                                                                                                                  If F.leftOp : Jᵒᵖ ⥤ C has a limit, we can construct a colimit for F : J ⥤ Cᵒᵖ.

                                                                                                                  The colimit of F.op is the opposite of limit F.

                                                                                                                  Equations
                                                                                                                    Instances For

                                                                                                                      The colimit of F.leftOp is the unopposite of limit F.

                                                                                                                      Equations
                                                                                                                        Instances For

                                                                                                                          The colimit of F.rightOp is the opposite of limit F.

                                                                                                                          Equations
                                                                                                                            Instances For

                                                                                                                              The colimit of F.unop is the unopposite of limit F.

                                                                                                                              Equations
                                                                                                                                Instances For

                                                                                                                                  If C has colimits of shape Jᵒᵖ, we can construct limits in Cᵒᵖ of shape J.

                                                                                                                                  If C has products indexed by X, then Cᵒᵖ has coproducts indexed by X.

                                                                                                                                  If C has coproducts indexed by X, then Cᵒᵖ has products indexed by X.

                                                                                                                                  instance CategoryTheory.Limits.instHasProductOppositeOp {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} [HasCoproduct Z] :
                                                                                                                                  HasProduct fun (x : α) => Opposite.op (Z x)
                                                                                                                                  def CategoryTheory.Limits.Cofan.op {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} (c : Cofan Z) :
                                                                                                                                  Fan fun (x : α) => Opposite.op (Z x)

                                                                                                                                  A Cofan gives a Fan in the opposite category.

                                                                                                                                  Equations
                                                                                                                                    Instances For
                                                                                                                                      noncomputable def CategoryTheory.Limits.Cofan.IsColimit.op {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {c : Cofan Z} (hc : IsColimit c) :

                                                                                                                                      If a Cofan is colimit, then its opposite is limit.

                                                                                                                                      Equations
                                                                                                                                        Instances For
                                                                                                                                          def CategoryTheory.Limits.opCoproductIsoProduct' {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {c : Cofan Z} {f : Fan fun (x : α) => Opposite.op (Z x)} (hc : IsColimit c) (hf : IsLimit f) :

                                                                                                                                          The canonical isomorphism from the opposite of an abstract coproduct to the corresponding product in the opposite category.

                                                                                                                                          Equations
                                                                                                                                            Instances For
                                                                                                                                              def CategoryTheory.Limits.opCoproductIsoProduct {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} (Z : αC) [HasCoproduct Z] :
                                                                                                                                              Opposite.op ( Z) ∏ᶜ fun (x : α) => Opposite.op (Z x)

                                                                                                                                              The canonical isomorphism from the opposite of the coproduct to the product in the opposite category.

                                                                                                                                              Equations
                                                                                                                                                Instances For
                                                                                                                                                  @[simp]
                                                                                                                                                  theorem CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {c : Cofan Z} {f : Fan fun (x : α) => Opposite.op (Z x)} (hc : IsColimit c) (hf : IsLimit f) (i : α) :
                                                                                                                                                  @[simp]
                                                                                                                                                  theorem CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj_assoc {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {c : Cofan Z} {f : Fan fun (x : α) => Opposite.op (Z x)} (hc : IsColimit c) (hf : IsLimit f) (i : α) {Z✝ : Cᵒᵖ} (h : Opposite.op (Z i) Z✝) :
                                                                                                                                                  @[simp]
                                                                                                                                                  theorem CategoryTheory.Limits.opCoproductIsoProduct_hom_comp_π {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} [HasCoproduct Z] (i : α) :
                                                                                                                                                  @[simp]
                                                                                                                                                  theorem CategoryTheory.Limits.opCoproductIsoProduct'_inv_comp_inj {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {c : Cofan Z} {f : Fan fun (x : α) => Opposite.op (Z x)} (hc : IsColimit c) (hf : IsLimit f) (b : α) :
                                                                                                                                                  theorem CategoryTheory.Limits.opCoproductIsoProduct'_comp_self {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {c c' : Cofan Z} {f : Fan fun (x : α) => Opposite.op (Z x)} (hc : IsColimit c) (hc' : IsColimit c') (hf : IsLimit f) :
                                                                                                                                                  theorem CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {c : Cofan Z} {f : Fan fun (x : α) => Opposite.op (Z x)} (hc : IsColimit c) (hf : IsLimit f) (c' : Cofan Z) :
                                                                                                                                                  theorem CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct_hom {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} [HasCoproduct Z] {X : C} (π : (a : α) → Z a X) :
                                                                                                                                                  instance CategoryTheory.Limits.instHasCoproductOppositeOp {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} [HasProduct Z] :
                                                                                                                                                  HasCoproduct fun (x : α) => Opposite.op (Z x)
                                                                                                                                                  def CategoryTheory.Limits.Fan.op {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} (f : Fan Z) :
                                                                                                                                                  Cofan fun (x : α) => Opposite.op (Z x)

                                                                                                                                                  A Fan gives a Cofan in the opposite category.

                                                                                                                                                  Equations
                                                                                                                                                    Instances For
                                                                                                                                                      noncomputable def CategoryTheory.Limits.Fan.IsLimit.op {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {f : Fan Z} (hf : IsLimit f) :

                                                                                                                                                      If a Fan is limit, then its opposite is colimit.

                                                                                                                                                      Equations
                                                                                                                                                        Instances For
                                                                                                                                                          def CategoryTheory.Limits.opProductIsoCoproduct' {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {f : Fan Z} {c : Cofan fun (x : α) => Opposite.op (Z x)} (hf : IsLimit f) (hc : IsColimit c) :

                                                                                                                                                          The canonical isomorphism from the opposite of an abstract product to the corresponding coproduct in the opposite category.

                                                                                                                                                          Equations
                                                                                                                                                            Instances For
                                                                                                                                                              def CategoryTheory.Limits.opProductIsoCoproduct {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} (Z : αC) [HasProduct Z] :
                                                                                                                                                              Opposite.op (∏ᶜ Z) fun (x : α) => Opposite.op (Z x)

                                                                                                                                                              The canonical isomorphism from the opposite of the product to the coproduct in the opposite category.

                                                                                                                                                              Equations
                                                                                                                                                                Instances For
                                                                                                                                                                  theorem CategoryTheory.Limits.proj_comp_opProductIsoCoproduct'_hom {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {f : Fan Z} {c : Cofan fun (x : α) => Opposite.op (Z x)} (hf : IsLimit f) (hc : IsColimit c) (b : α) :
                                                                                                                                                                  theorem CategoryTheory.Limits.opProductIsoCoproduct'_comp_self {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {f f' : Fan Z} {c : Cofan fun (x : α) => Opposite.op (Z x)} (hf : IsLimit f) (hf' : IsLimit f') (hc : IsColimit c) :
                                                                                                                                                                  theorem CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} {f : Fan Z} {c : Cofan fun (x : α) => Opposite.op (Z x)} (hf : IsLimit f) (hc : IsColimit c) (f' : Fan Z) :
                                                                                                                                                                  theorem CategoryTheory.Limits.opProductIsoCoproduct_inv_comp_lift {C : Type u₁} [Category.{v₁, u₁} C] {α : Type u_1} {Z : αC} [HasProduct Z] {X : C} (π : (a : α) → X Z a) :

                                                                                                                                                                  The canonical isomorphism from the opposite of the binary product to the coproduct in the opposite category.

                                                                                                                                                                  Equations
                                                                                                                                                                    Instances For
                                                                                                                                                                      def CategoryTheory.Limits.spanOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) :

                                                                                                                                                                      The canonical isomorphism relating Span f.op g.op and (Cospan f g).op

                                                                                                                                                                      Equations
                                                                                                                                                                        Instances For
                                                                                                                                                                          @[simp]
                                                                                                                                                                          theorem CategoryTheory.Limits.spanOp_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingSpan) :
                                                                                                                                                                          @[simp]
                                                                                                                                                                          theorem CategoryTheory.Limits.spanOp_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingSpan) :
                                                                                                                                                                          def CategoryTheory.Limits.opCospan {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) :

                                                                                                                                                                          The canonical isomorphism relating (Cospan f g).op and Span f.op g.op

                                                                                                                                                                          Equations
                                                                                                                                                                            Instances For
                                                                                                                                                                              @[simp]
                                                                                                                                                                              theorem CategoryTheory.Limits.opCospan_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingCospanᵒᵖ) :
                                                                                                                                                                              @[simp]
                                                                                                                                                                              theorem CategoryTheory.Limits.opCospan_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingCospanᵒᵖ) :
                                                                                                                                                                              def CategoryTheory.Limits.cospanOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) :

                                                                                                                                                                              The canonical isomorphism relating Cospan f.op g.op and (Span f g).op

                                                                                                                                                                              Equations
                                                                                                                                                                                Instances For
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem CategoryTheory.Limits.cospanOp_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingCospan) :
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem CategoryTheory.Limits.cospanOp_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingCospan) :
                                                                                                                                                                                  def CategoryTheory.Limits.opSpan {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) :

                                                                                                                                                                                  The canonical isomorphism relating (Span f g).op and Cospan f.op g.op

                                                                                                                                                                                  Equations
                                                                                                                                                                                    Instances For
                                                                                                                                                                                      @[simp]
                                                                                                                                                                                      theorem CategoryTheory.Limits.opSpan_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingSpanᵒᵖ) :
                                                                                                                                                                                      @[simp]
                                                                                                                                                                                      theorem CategoryTheory.Limits.opSpan_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingSpanᵒᵖ) :
                                                                                                                                                                                      def CategoryTheory.Limits.PushoutCocone.unop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :

                                                                                                                                                                                      The obvious map PushoutCocone f g → PullbackCone f.unop g.unop

                                                                                                                                                                                      Equations
                                                                                                                                                                                        Instances For
                                                                                                                                                                                          @[simp]
                                                                                                                                                                                          theorem CategoryTheory.Limits.PushoutCocone.unop_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                          @[simp]
                                                                                                                                                                                          theorem CategoryTheory.Limits.PushoutCocone.unop_π_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) (X✝ : WalkingCospan) :
                                                                                                                                                                                          c.unop.π.app X✝ = CategoryStruct.comp (c.ι.app X✝).unop (Option.rec (Iso.refl X) (fun (val : WalkingPair) => WalkingPair.rec (Iso.refl Y) (Iso.refl Z) val) X✝).inv.unop
                                                                                                                                                                                          theorem CategoryTheory.Limits.PushoutCocone.unop_fst {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                          theorem CategoryTheory.Limits.PushoutCocone.unop_snd {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                          def CategoryTheory.Limits.PushoutCocone.op {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :

                                                                                                                                                                                          The obvious map PushoutCocone f.op g.op → PullbackCone f g

                                                                                                                                                                                          Equations
                                                                                                                                                                                            Instances For
                                                                                                                                                                                              @[simp]
                                                                                                                                                                                              theorem CategoryTheory.Limits.PushoutCocone.op_π_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) (X✝ : WalkingCospan) :
                                                                                                                                                                                              @[simp]
                                                                                                                                                                                              theorem CategoryTheory.Limits.PushoutCocone.op_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                              theorem CategoryTheory.Limits.PushoutCocone.op_fst {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                              c.op.fst = c.inl.op
                                                                                                                                                                                              theorem CategoryTheory.Limits.PushoutCocone.op_snd {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                              c.op.snd = c.inr.op
                                                                                                                                                                                              def CategoryTheory.Limits.PullbackCone.unop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :

                                                                                                                                                                                              The obvious map PullbackCone f g → PushoutCocone f.unop g.unop

                                                                                                                                                                                              Equations
                                                                                                                                                                                                Instances For
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem CategoryTheory.Limits.PullbackCone.unop_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem CategoryTheory.Limits.PullbackCone.unop_ι_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) (X✝ : WalkingSpan) :
                                                                                                                                                                                                  c.unop.ι.app X✝ = CategoryStruct.comp (Option.rec (Iso.refl Z) (fun (val : WalkingPair) => WalkingPair.rec (Iso.refl X) (Iso.refl Y) val) X✝).hom.unop (c.π.app X✝).unop
                                                                                                                                                                                                  theorem CategoryTheory.Limits.PullbackCone.unop_inl {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                  theorem CategoryTheory.Limits.PullbackCone.unop_inr {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                  def CategoryTheory.Limits.PullbackCone.op {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :

                                                                                                                                                                                                  The obvious map PullbackCone f g → PushoutCocone f.op g.op

                                                                                                                                                                                                  Equations
                                                                                                                                                                                                    Instances For
                                                                                                                                                                                                      @[simp]
                                                                                                                                                                                                      theorem CategoryTheory.Limits.PullbackCone.op_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                      @[simp]
                                                                                                                                                                                                      theorem CategoryTheory.Limits.PullbackCone.op_ι_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) (X✝ : WalkingSpan) :
                                                                                                                                                                                                      theorem CategoryTheory.Limits.PullbackCone.op_inl {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                      c.op.inl = c.fst.op
                                                                                                                                                                                                      theorem CategoryTheory.Limits.PullbackCone.op_inr {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                      c.op.inr = c.snd.op
                                                                                                                                                                                                      def CategoryTheory.Limits.PullbackCone.opUnop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                      c.op.unop c

                                                                                                                                                                                                      If c is a pullback cone, then c.op.unop is isomorphic to c.

                                                                                                                                                                                                      Equations
                                                                                                                                                                                                        Instances For
                                                                                                                                                                                                          def CategoryTheory.Limits.PullbackCone.unopOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                                                                                                                                                                                                          c.unop.op c

                                                                                                                                                                                                          If c is a pullback cone in Cᵒᵖ, then c.unop.op is isomorphic to c.

                                                                                                                                                                                                          Equations
                                                                                                                                                                                                            Instances For
                                                                                                                                                                                                              def CategoryTheory.Limits.PushoutCocone.opUnop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                                              c.op.unop c

                                                                                                                                                                                                              If c is a pushout cocone, then c.op.unop is isomorphic to c.

                                                                                                                                                                                                              Equations
                                                                                                                                                                                                                Instances For
                                                                                                                                                                                                                  def CategoryTheory.Limits.PushoutCocone.unopOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                                                                                                                                                                                                                  c.unop.op c

                                                                                                                                                                                                                  If c is a pushout cocone in Cᵒᵖ, then c.unop.op is isomorphic to c.

                                                                                                                                                                                                                  Equations
                                                                                                                                                                                                                    Instances For
                                                                                                                                                                                                                      noncomputable def CategoryTheory.Limits.PushoutCocone.isColimitEquivIsLimitOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :

                                                                                                                                                                                                                      A pushout cone is a colimit cocone if and only if the corresponding pullback cone in the opposite category is a limit cone.

                                                                                                                                                                                                                      Equations
                                                                                                                                                                                                                        Instances For

                                                                                                                                                                                                                          A pushout cone is a colimit cocone in Cᵒᵖ if and only if the corresponding pullback cone in C is a limit cone.

                                                                                                                                                                                                                          Equations
                                                                                                                                                                                                                            Instances For

                                                                                                                                                                                                                              A pullback cone is a limit cone if and only if the corresponding pushout cocone in the opposite category is a colimit cocone.

                                                                                                                                                                                                                              Equations
                                                                                                                                                                                                                                Instances For

                                                                                                                                                                                                                                  A pullback cone is a limit cone in Cᵒᵖ if and only if the corresponding pushout cocone in C is a colimit cocone.

                                                                                                                                                                                                                                  Equations
                                                                                                                                                                                                                                    Instances For
                                                                                                                                                                                                                                      noncomputable def CategoryTheory.Limits.pullbackIsoUnopPushout {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) [h : HasPullback f g] [HasPushout f.op g.op] :

                                                                                                                                                                                                                                      The pullback of f and g in C is isomorphic to the pushout of f.op and g.op in Cᵒᵖ.

                                                                                                                                                                                                                                      Equations
                                                                                                                                                                                                                                        Instances For
                                                                                                                                                                                                                                          noncomputable def CategoryTheory.Limits.pushoutIsoUnopPullback {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : X Y) [h : HasPushout f g] [HasPullback f.op g.op] :

                                                                                                                                                                                                                                          The pushout of f and g in C is isomorphic to the pullback of f.op and g.op in Cᵒᵖ.

                                                                                                                                                                                                                                          Equations
                                                                                                                                                                                                                                            Instances For

                                                                                                                                                                                                                                              A colimit cokernel cofork gives a limit kernel fork in the opposite category

                                                                                                                                                                                                                                              Equations
                                                                                                                                                                                                                                                Instances For

                                                                                                                                                                                                                                                  A colimit cokernel cofork in the opposite category gives a limit kernel fork in the original category

                                                                                                                                                                                                                                                  Equations
                                                                                                                                                                                                                                                    Instances For

                                                                                                                                                                                                                                                      A limit kernel fork gives a colimit cokernel cofork in the opposite category

                                                                                                                                                                                                                                                      Equations
                                                                                                                                                                                                                                                        Instances For

                                                                                                                                                                                                                                                          A limit kernel fork in the opposite category gives a colimit cokernel cofork in the original category

                                                                                                                                                                                                                                                          Equations
                                                                                                                                                                                                                                                            Instances For