Documentation

Mathlib.CategoryTheory.MorphismProperty.OverAdjunction

Adjunction of pushforward and pullback in P.Over Q X #

A morphism f : X ⟶ Y defines two functors:

These are adjoint under suitable assumptions on P and Q.

If P is stable under composition and f : X ⟶ Y satisfies P, this is the functor P.Over Q X ⥤ P.Over Q Y given by composing with f.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.MorphismProperty.Over.map_map_left {T : Type u_1} [Category.{u_2, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] {X Y : T} {f : X Y} [P.IsStableUnderComposition] (hPf : P f) {X✝ Y✝ : MorphismProperty.Comma (Functor.id T) (Functor.fromPUnit X) P Q } (f✝ : X✝ Y✝) :
      ((map Q hPf).map f✝).left = (Comma.Hom.hom f✝).left
      theorem CategoryTheory.MorphismProperty.Over.map_comp {T : Type u_1} [Category.{u_2, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X Y} (hf : P f) {g : Y Z} (hg : P g) :
      map Q = (map Q hf).comp (map Q hg)
      def CategoryTheory.MorphismProperty.Over.mapComp {T : Type u_1} [Category.{u_2, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] :
      map Q (map Q hf).comp (map Q hg)

      Over.map commutes with composition.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left {T : Type u_1} [Category.{u_2, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] (X✝ : P.Over Q X) :
          ((mapComp Q hf hg).inv.app X✝).left = CategoryStruct.id X✝.left
          @[simp]
          theorem CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left {T : Type u_1} [Category.{u_2, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] (X✝ : P.Over Q X) :
          ((mapComp Q hf hg).hom.app X✝).left = CategoryStruct.id X✝.left

          If P and Q are stable under base change and pullbacks exist in T, this is the functor P.Over Q Y ⥤ P.Over Q X given by base change along f.

          Equations
            Instances For

              Over.pullback commutes with composition.

              Equations
                Instances For

                  If f = g, then base change along f is naturally isomorphic to base change along g.

                  Equations
                    Instances For

                      P.Over.map is left adjoint to P.Over.pullback if f satisfies P.

                      Equations
                        Instances For