Documentation

Mathlib.CategoryTheory.Subpresheaf.Equalizer

The equalizer of two morphisms of presheaves, as a subpresheaf #

If F₁ and F₂ are presheaves of types, A : Subpresheaf F₁, and f and g are two morphisms A.toPresheaf ⟶ F₂, we introduce Subcomplex.equalizer f g, which is the subpresheaf of F₁ contained in A where f and g coincide.

def CategoryTheory.Subpresheaf.equalizer {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor Cᵒᵖ (Type w)} {A : Subpresheaf F₁} (f g : A.toPresheaf F₂) :

The equalizer of two morphisms of presheaves of types of the form A.toPresheaf ⟶ F₂ with A : Subpresheaf F₁, as a subcomplex of F₁.

Equations
    Instances For
      theorem CategoryTheory.Subpresheaf.equalizer_obj {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor Cᵒᵖ (Type w)} {A : Subpresheaf F₁} (f g : A.toPresheaf F₂) (U : Cᵒᵖ) :
      (Subpresheaf.equalizer f g).obj U = {x : F₁.obj U | ∃ (hx : x A.obj U), f.app U x, hx = g.app U x, hx}
      @[simp]
      theorem CategoryTheory.Subpresheaf.mem_equalizer_iff {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor Cᵒᵖ (Type w)} {A : Subpresheaf F₁} (f g : A.toPresheaf F₂) {i : Cᵒᵖ} (x : A.toPresheaf.obj i) :
      x (Subpresheaf.equalizer f g).obj i f.app i x = g.app i x

      Given two morphisms f and g in A.toPresheaf ⟶ F₂, this is the monomorphism of presheaves corresponding to the inclusion Subpresheaf.equalizer f g ≤ A.

      Equations
        Instances For

          Given two morphisms f and g in A.toPresheaf ⟶ F₂, if φ : G ⟶ A.toPresheaf is such that φ ≫ f = φ ≫ g, then this is the lifted morphism G ⟶ (Subpresheaf.equalizer f g).toPresheaf. This is part of the universal property of the equalizer that is satisfied by the presheaf (Subpresheaf.equalizer f g).toPresheaf.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Subpresheaf.equalizer.lift_ι {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor Cᵒᵖ (Type w)} {A : Subpresheaf F₁} (f g : A.toPresheaf F₂) {G : Functor Cᵒᵖ (Type w)} (φ : G A.toPresheaf) (w : CategoryStruct.comp φ f = CategoryStruct.comp φ g) :
              CategoryStruct.comp (lift f g φ w) (ι f g) = φ

              The (limit) fork which expresses (Subpresheaf.equalizer f g).toPresheaf as the equalizer of f and g.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Subpresheaf.equalizer.fork_ι {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor Cᵒᵖ (Type w)} {A : Subpresheaf F₁} (f g : A.toPresheaf F₂) :
                  (fork f g).ι = ι f g

                  (Subpresheaf.equalizer f g).toPresheaf is the equalizer of f and g.

                  Equations
                    Instances For