Documentation

Mathlib.Data.Analysis.Filter

Computational realization of filters (experimental) #

This file provides infrastructure to compute with filters.

Main declarations #

structure CFilter (α : Type u_1) (σ : Type u_2) [PartialOrder α] :
Type (max u_1 u_2)

A CFilter α σ is a realization of a filter (base) on α, represented by a type σ together with operations for the top element and the binary inf operation.

  • f : σα
  • pt : σ
  • inf : σσσ
  • inf_le_left (a b : σ) : self.f (self.inf a b) self.f a
  • inf_le_right (a b : σ) : self.f (self.inf a b) self.f b
Instances For
    instance instInhabitedCFilter {α : Type u_1} [Inhabited α] [SemilatticeInf α] :
    Equations
      instance CFilter.instCoeFunForall {α : Type u_1} {σ : Type u_3} [PartialOrder α] :
      CoeFun (CFilter α σ) fun (x : CFilter α σ) => σα
      Equations
        theorem CFilter.coe_mk {α : Type u_1} {σ : Type u_3} [PartialOrder α] (f : σα) (pt : σ) (inf : σσσ) (h₁ : ∀ (a b : σ), f (inf a b) f a) (h₂ : ∀ (a b : σ), f (inf a b) f b) (a : σ) :
        { f := f, pt := pt, inf := inf, inf_le_left := h₁, inf_le_right := h₂ }.f a = f a
        def CFilter.ofEquiv {α : Type u_1} {σ : Type u_3} {τ : Type u_4} [PartialOrder α] (E : σ τ) :
        CFilter α σCFilter α τ

        Map a CFilter to an equivalent representation type.

        Equations
          Instances For
            @[simp]
            theorem CFilter.ofEquiv_val {α : Type u_1} {σ : Type u_3} {τ : Type u_4} [PartialOrder α] (E : σ τ) (F : CFilter α σ) (a : τ) :
            (ofEquiv E F).f a = F.f (E.symm a)
            def CFilter.toFilter {α : Type u_1} {σ : Type u_3} (F : CFilter (Set α) σ) :

            The filter represented by a CFilter is the collection of supersets of elements of the filter base.

            Equations
              Instances For
                @[simp]
                theorem CFilter.mem_toFilter_sets {α : Type u_1} {σ : Type u_3} (F : CFilter (Set α) σ) {a : Set α} :
                a F.toFilter ∃ (b : σ), F.f b a
                structure Filter.Realizer {α : Type u_1} (f : Filter α) :
                Type (max u_1 (u_5 + 1))

                A realizer for filter f is a cfilter which generates f.

                Instances For
                  def CFilter.toRealizer {α : Type u_1} {σ : Type u_3} (F : CFilter (Set α) σ) :

                  A CFilter realizes the filter it generates.

                  Equations
                    Instances For
                      theorem Filter.Realizer.mem_sets {α : Type u_1} {f : Filter α} (F : f.Realizer) {a : Set α} :
                      a f ∃ (b : F.σ), F.F.f b a
                      def Filter.Realizer.ofEq {α : Type u_1} {f g : Filter α} (e : f = g) (F : f.Realizer) :

                      Transfer a realizer along an equality of filter. This has better definitional equalities than the Eq.rec proof.

                      Equations
                        Instances For
                          def Filter.Realizer.ofFilter {α : Type u_1} (f : Filter α) :

                          A filter realizes itself.

                          Equations
                            Instances For
                              def Filter.Realizer.ofEquiv {α : Type u_1} {τ : Type u_4} {f : Filter α} (F : f.Realizer) (E : F.σ τ) :

                              Transfer a filter realizer to another realizer on a different base type.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem Filter.Realizer.ofEquiv_σ {α : Type u_1} {τ : Type u_4} {f : Filter α} (F : f.Realizer) (E : F.σ τ) :
                                  (F.ofEquiv E).σ = τ
                                  @[simp]
                                  theorem Filter.Realizer.ofEquiv_F {α : Type u_1} {τ : Type u_4} {f : Filter α} (F : f.Realizer) (E : F.σ τ) (s : τ) :
                                  (F.ofEquiv E).F.f s = F.F.f (E.symm s)
                                  def Filter.Realizer.principal {α : Type u_1} (s : Set α) :

                                  Unit is a realizer for the principal filter

                                  Equations
                                    Instances For
                                      @[simp]
                                      @[simp]
                                      theorem Filter.Realizer.principal_F {α : Type u_1} (s : Set α) (u : Unit) :

                                      Unit is a realizer for the top filter

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Filter.Realizer.top_F {α : Type u_1} (u : Unit) :

                                          Unit is a realizer for the bottom filter

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem Filter.Realizer.bot_F {α : Type u_1} (u : Unit) :
                                              def Filter.Realizer.map {α : Type u_1} {β : Type u_2} (m : αβ) {f : Filter α} (F : f.Realizer) :

                                              Construct a realizer for map m f given a realizer for f

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem Filter.Realizer.map_σ {α : Type u_1} {β : Type u_2} (m : αβ) {f : Filter α} (F : f.Realizer) :
                                                  @[simp]
                                                  theorem Filter.Realizer.map_F {α : Type u_1} {β : Type u_2} (m : αβ) {f : Filter α} (F : f.Realizer) (s : (Realizer.map m F).σ) :
                                                  (Realizer.map m F).F.f s = m '' F.F.f s
                                                  def Filter.Realizer.comap {α : Type u_1} {β : Type u_2} (m : αβ) {f : Filter β} (F : f.Realizer) :

                                                  Construct a realizer for comap m f given a realizer for f

                                                  Equations
                                                    Instances For
                                                      def Filter.Realizer.sup {α : Type u_1} {f g : Filter α} (F : f.Realizer) (G : g.Realizer) :
                                                      (fg).Realizer

                                                      Construct a realizer for the sup of two filters

                                                      Equations
                                                        Instances For
                                                          def Filter.Realizer.inf {α : Type u_1} {f g : Filter α} (F : f.Realizer) (G : g.Realizer) :
                                                          (fg).Realizer

                                                          Construct a realizer for the inf of two filters

                                                          Equations
                                                            Instances For

                                                              Construct a realizer for the cofinite filter

                                                              Equations
                                                                Instances For
                                                                  def Filter.Realizer.bind {α : Type u_1} {β : Type u_2} {f : Filter α} {m : αFilter β} (F : f.Realizer) (G : (i : α) → (m i).Realizer) :

                                                                  Construct a realizer for filter bind

                                                                  Equations
                                                                    Instances For
                                                                      def Filter.Realizer.iSup {α : Type u_1} {β : Type u_2} {f : αFilter β} (F : (i : α) → (f i).Realizer) :
                                                                      (⨆ (i : α), f i).Realizer

                                                                      Construct a realizer for indexed supremum

                                                                      Equations
                                                                        Instances For
                                                                          def Filter.Realizer.prod {α : Type u_1} {f g : Filter α} (F : f.Realizer) (G : g.Realizer) :

                                                                          Construct a realizer for the product of filters

                                                                          Equations
                                                                            Instances For
                                                                              theorem Filter.Realizer.le_iff {α : Type u_1} {f g : Filter α} (F : f.Realizer) (G : g.Realizer) :
                                                                              f g ∀ (b : G.σ), ∃ (a : F.σ), F.F.f a G.F.f b
                                                                              theorem Filter.Realizer.tendsto_iff {α : Type u_1} {β : Type u_2} (f : αβ) {l₁ : Filter α} {l₂ : Filter β} (L₁ : l₁.Realizer) (L₂ : l₂.Realizer) :
                                                                              Tendsto f l₁ l₂ ∀ (b : L₂.σ), ∃ (a : L₁.σ), xL₁.F.f a, f x L₂.F.f b
                                                                              theorem Filter.Realizer.ne_bot_iff {α : Type u_1} {f : Filter α} (F : f.Realizer) :
                                                                              f ∀ (a : F.σ), (F.F.f a).Nonempty