Documentation

Mathlib.Data.Nat.PartENat

Natural numbers with infinity #

The natural numbers and an extra top element . This implementation uses Part as an implementation. Use ℕ∞ instead unless you care about computability.

Main definitions #

The following instances are defined:

There is no additive analogue of MonoidWithZero; if there were then PartENat could be an AddMonoidWithTop.

Implementation details #

PartENat is defined to be Part.

+ and are defined on PartENat, but there is an issue with * because it's not clear what 0 * ⊤ should be. mul is hence left undefined. Similarly ⊤ - ⊤ is ambiguous so there is no - defined on PartENat.

Before the open scoped Classical line, various proofs are made with decidability assumptions. This can cause issues -- see for example the non-simp lemma toWithTopZero proved by rfl, followed by @[simp] lemma toWithTopZero' whose proof uses convert.

Tags #

PartENat, ℕ∞

Type of natural numbers with infinity ()

Equations
    Instances For

      The computable embedding ℕ → PartENat.

      This coincides with the coercion coe : ℕ → PartENat, see PartENat.some_eq_natCast.

      Equations
        Instances For
          @[simp]
          theorem PartENat.dom_some (x : ) :
          (↑x).Dom
          theorem PartENat.some_eq_natCast (n : ) :
          n = n
          theorem PartENat.natCast_inj {x y : } :
          x = y x = y

          Alias of Nat.cast_inj specialized to PartENat

          @[simp]
          theorem PartENat.dom_natCast (x : ) :
          (↑x).Dom
          @[simp]
          @[simp]
          Equations
            theorem PartENat.le_def (x y : PartENat) :
            x y ∃ (h : y.Domx.Dom), ∀ (hy : y.Dom), x.get y.get hy
            theorem PartENat.casesOn' {P : PartENatProp} (a : PartENat) :
            P (∀ (n : ), P n)P a
            theorem PartENat.casesOn {P : PartENatProp} (a : PartENat) :
            P (∀ (n : ), P n)P a
            @[simp]
            theorem PartENat.natCast_get {x : PartENat} (h : x.Dom) :
            (x.get h) = x
            @[simp]
            theorem PartENat.get_natCast' (x : ) (h : (↑x).Dom) :
            (↑x).get h = x
            theorem PartENat.get_natCast {x : } :
            (↑x).get = x
            theorem PartENat.coe_add_get {x : } {y : PartENat} (h : (x + y).Dom) :
            (x + y).get h = x + y.get
            @[simp]
            theorem PartENat.get_add {x y : PartENat} (h : (x + y).Dom) :
            (x + y).get h = x.get + y.get
            @[simp]
            theorem PartENat.get_zero (h : Part.Dom 0) :
            Part.get 0 h = 0
            @[simp]
            theorem PartENat.get_one (h : Part.Dom 1) :
            Part.get 1 h = 1
            @[simp]
            theorem PartENat.get_eq_iff_eq_some {a : PartENat} {ha : a.Dom} {b : } :
            a.get ha = b a = b
            theorem PartENat.get_eq_iff_eq_coe {a : PartENat} {ha : a.Dom} {b : } :
            a.get ha = b a = b
            theorem PartENat.dom_of_le_of_dom {x y : PartENat} :
            x yy.Domx.Dom
            theorem PartENat.dom_of_le_some {x : PartENat} {y : } (h : x y) :
            x.Dom
            theorem PartENat.dom_of_le_natCast {x : PartENat} {y : } (h : x y) :
            x.Dom
            Equations
              theorem PartENat.lt_def (x y : PartENat) :
              x < y ∃ (hx : x.Dom), ∀ (hy : y.Dom), x.get hx < y.get hy
              theorem PartENat.coe_le_coe {x y : } :
              x y x y

              Alias of Nat.cast_le specialized to PartENat

              theorem PartENat.coe_lt_coe {x y : } :
              x < y x < y

              Alias of Nat.cast_lt specialized to PartENat

              @[simp]
              theorem PartENat.get_le_get {x y : PartENat} {hx : x.Dom} {hy : y.Dom} :
              x.get hx y.get hy x y
              theorem PartENat.le_coe_iff (x : PartENat) (n : ) :
              x n ∃ (h : x.Dom), x.get h n
              theorem PartENat.lt_coe_iff (x : PartENat) (n : ) :
              x < n ∃ (h : x.Dom), x.get h < n
              theorem PartENat.coe_le_iff (n : ) (x : PartENat) :
              n x ∀ (h : x.Dom), n x.get h
              theorem PartENat.coe_lt_iff (n : ) (x : PartENat) :
              n < x ∀ (h : x.Dom), n < x.get h
              theorem PartENat.dom_of_lt {x y : PartENat} :
              x < yx.Dom
              @[simp]
              theorem PartENat.natCast_lt_top (x : ) :
              x <
              @[simp]
              @[simp]
              @[simp]
              theorem PartENat.natCast_ne_top (x : ) :
              x
              @[simp]
              theorem PartENat.ne_top_iff {x : PartENat} :
              x ∃ (n : ), x = n
              theorem PartENat.ne_top_of_lt {x y : PartENat} (h : x < y) :
              theorem PartENat.eq_top_iff_forall_lt (x : PartENat) :
              x = ∀ (n : ), n < x
              theorem PartENat.eq_top_iff_forall_le (x : PartENat) :
              x = ∀ (n : ), n x
              instance PartENat.isTotal :
              IsTotal PartENat fun (x1 x2 : PartENat) => x1 x2
              noncomputable instance PartENat.linearOrder :
              Equations
                noncomputable instance PartENat.lattice :
                Equations
                  theorem PartENat.eq_natCast_sub_of_add_eq_natCast {x y : PartENat} {n : } (h : x + y = n) :
                  x = ↑(n - y.get )
                  theorem PartENat.add_lt_add_right {x y z : PartENat} (h : x < y) (hz : z ) :
                  x + z < y + z
                  theorem PartENat.add_lt_add_iff_right {x y z : PartENat} (hz : z ) :
                  x + z < y + z x < y
                  theorem PartENat.add_lt_add_iff_left {x y z : PartENat} (hz : z ) :
                  z + x < z + y x < y
                  theorem PartENat.lt_add_iff_pos_right {x y : PartENat} (hx : x ) :
                  x < x + y 0 < y
                  theorem PartENat.lt_add_one {x : PartENat} (hx : x ) :
                  x < x + 1
                  theorem PartENat.le_of_lt_add_one {x y : PartENat} (h : x < y + 1) :
                  x y
                  theorem PartENat.add_one_le_of_lt {x y : PartENat} (h : x < y) :
                  x + 1 y
                  theorem PartENat.add_one_le_iff_lt {x y : PartENat} (hx : x ) :
                  x + 1 y x < y
                  theorem PartENat.coe_succ_le_iff {n : } {e : PartENat} :
                  n.succ e n < e
                  theorem PartENat.lt_add_one_iff_lt {x y : PartENat} (hx : x ) :
                  x < y + 1 x y
                  theorem PartENat.lt_coe_succ_iff_le {x : PartENat} {n : } (hx : x ) :
                  x < n.succ x n
                  theorem PartENat.add_right_cancel_iff {a b c : PartENat} (hc : c ) :
                  a + c = b + c a = b
                  theorem PartENat.add_left_cancel_iff {a b c : PartENat} (ha : a ) :
                  a + b = a + c b = c

                  Computably converts a PartENat to a ℕ∞.

                  Equations
                    Instances For
                      theorem PartENat.toWithTop_some (n : ) :
                      (↑n).toWithTop = n
                      theorem PartENat.toWithTop_natCast (n : ) {x✝ : Decidable (↑n).Dom} :
                      (↑n).toWithTop = n
                      @[simp]
                      theorem PartENat.toWithTop_natCast' (n : ) {x✝ : Decidable (↑n).Dom} :
                      (↑n).toWithTop = n
                      @[simp]

                      Coercion from ℕ∞ to PartENat.

                      Equations
                        Instances For
                          @[simp]
                          @[simp]
                          theorem PartENat.ofENat_coe (n : ) :
                          n = n
                          @[simp]
                          theorem PartENat.ofENat_zero :
                          0 = 0
                          @[simp]
                          theorem PartENat.ofENat_one :
                          1 = 1
                          @[simp]
                          theorem PartENat.toWithTop_ofENat (n : ℕ∞) {x✝ : Decidable (↑n).Dom} :
                          (↑n).toWithTop = n
                          @[simp]
                          theorem PartENat.ofENat_toWithTop (x : PartENat) {x✝ : Decidable x.Dom} :
                          x.toWithTop = x
                          @[simp]
                          theorem PartENat.ofENat_le {x y : ℕ∞} :
                          x y x y
                          @[simp]
                          theorem PartENat.ofENat_lt {x y : ℕ∞} :
                          x < y x < y

                          Equiv between PartENat and ℕ∞ (for the order isomorphism see withTopOrderIso).

                          Equations
                            Instances For

                              toWithTop induces an order isomorphism between PartENat and ℕ∞.

                              Equations
                                Instances For

                                  toWithTop induces an additive monoid isomorphism between PartENat and ℕ∞.

                                  Equations
                                    Instances For
                                      theorem PartENat.lt_wf :
                                      WellFounded fun (x1 x2 : PartENat) => x1 < x2

                                      The smallest PartENat satisfying a (decidable) predicate P : ℕ → Prop

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem PartENat.find_get (P : Prop) [DecidablePred P] (h : (find P).Dom) :
                                          (find P).get h = Nat.find h
                                          theorem PartENat.find_dom (P : Prop) [DecidablePred P] (h : ∃ (n : ), P n) :
                                          (find P).Dom
                                          theorem PartENat.lt_find (P : Prop) [DecidablePred P] (n : ) (h : mn, ¬P m) :
                                          n < find P
                                          theorem PartENat.lt_find_iff (P : Prop) [DecidablePred P] (n : ) :
                                          n < find P mn, ¬P m
                                          theorem PartENat.find_le (P : Prop) [DecidablePred P] (n : ) (h : P n) :
                                          find P n
                                          theorem PartENat.find_eq_top_iff (P : Prop) [DecidablePred P] :
                                          find P = ∀ (n : ), ¬P n