Documentation

Mathlib.GroupTheory.Order.Min

Minimum order of an element #

This file defines the minimum order of an element of a monoid.

Main declarations #

noncomputable def Monoid.minOrder (α : Type u_2) [Monoid α] :

The minimum order of a non-identity element. Also the minimum size of a nontrivial subgroup, see Monoid.le_minOrder_iff_forall_subgroup. Returns if the monoid is torsion-free.

Equations
    Instances For
      noncomputable def AddMonoid.minOrder (α : Type u_2) [AddMonoid α] :

      The minimum order of a non-identity element. Also the minimum size of a nontrivial subgroup, see AddMonoid.le_minOrder_iff_forall_addSubgroup. Returns if the monoid is torsion-free.

      Equations
        Instances For
          @[simp]
          theorem Monoid.le_minOrder {α : Type u_2} [Monoid α] {n : ℕ∞} :
          n minOrder α ∀ ⦃a : α⦄, a 1IsOfFinOrder an (orderOf a)
          @[simp]
          theorem AddMonoid.le_minOrder {α : Type u_2} [AddMonoid α] {n : ℕ∞} :
          n minOrder α ∀ ⦃a : α⦄, a 0IsOfFinAddOrder an (addOrderOf a)
          theorem Monoid.minOrder_le_orderOf {α : Type u_2} [Monoid α] {a : α} (ha : a 1) (ha' : IsOfFinOrder a) :
          minOrder α (orderOf a)
          theorem AddMonoid.minOrder_le_addOrderOf {α : Type u_2} [AddMonoid α] {a : α} (ha : a 0) (ha' : IsOfFinAddOrder a) :
          theorem Monoid.le_minOrder_iff_forall_subgroup {G : Type u_1} [Group G] {n : ℕ∞} :
          n minOrder G ∀ ⦃s : Subgroup G⦄, s (↑s).Finiten (Nat.card s)
          theorem AddMonoid.le_minOrder_iff_forall_addSubgroup {G : Type u_1} [AddGroup G] {n : ℕ∞} :
          n minOrder G ∀ ⦃s : AddSubgroup G⦄, s (↑s).Finiten (Nat.card s)
          theorem Monoid.minOrder_le_natCard {G : Type u_1} [Group G] {s : Subgroup G} (hs : s ) (hs' : (↑s).Finite) :
          minOrder G (Nat.card s)
          theorem AddMonoid.minOrder_le_natCard {G : Type u_1} [AddGroup G] {s : AddSubgroup G} (hs : s ) (hs' : (↑s).Finite) :
          minOrder G (Nat.card s)
          @[simp]
          theorem ZMod.minOrder {n : } (hn : n 0) (hn₁ : n 1) :
          @[simp]
          theorem ZMod.minOrder_of_prime {p : } (hp : Nat.Prime p) :