Documentation

Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1

Conditional expectation in L1 #

This file contains two more steps of the construction of the conditional expectation, which is completed in MeasureTheory.Function.ConditionalExpectation.Basic. See that file for a description of the full process.

The conditional expectation of an function is defined in MeasureTheory.Function.ConditionalExpectation.CondexpL2. In this file, we perform two steps.

Main definitions #

Conditional expectation of an indicator as a continuous linear map. #

The goal of this section is to build condExpInd (hm : m ≤ m0) (μ : Measure α) (s : Set s) : G →L[ℝ] α →₁[μ] G, which takes x : G to the conditional expectation of the indicator of the set s with value x, seen as an element of α →₁[μ] G.

def MeasureTheory.condExpIndL1Fin {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
(Lp G 1 μ)

Conditional expectation of the indicator of a measurable set with finite measure, as a function in L1.

Equations
    Instances For
      @[deprecated MeasureTheory.condExpIndL1Fin (since := "2025-01-21")]
      def MeasureTheory.condexpIndL1Fin {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
      (Lp G 1 μ)

      Alias of MeasureTheory.condExpIndL1Fin.


      Conditional expectation of the indicator of a measurable set with finite measure, as a function in L1.

      Equations
        Instances For
          theorem MeasureTheory.condExpIndL1Fin_ae_eq_condExpIndSMul {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          (condExpIndL1Fin hm hs hμs x) =ᶠ[ae μ] (condExpIndSMul hm hs hμs x)
          theorem MeasureTheory.condExpIndL1Fin_add {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x y : G) :
          condExpIndL1Fin hm hs hμs (x + y) = condExpIndL1Fin hm hs hμs x + condExpIndL1Fin hm hs hμs y
          @[deprecated MeasureTheory.condExpIndL1Fin_add (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndL1Fin_add {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x y : G) :
          condExpIndL1Fin hm hs hμs (x + y) = condExpIndL1Fin hm hs hμs x + condExpIndL1Fin hm hs hμs y

          Alias of MeasureTheory.condExpIndL1Fin_add.

          theorem MeasureTheory.condExpIndL1Fin_smul {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (c : ) (x : G) :
          condExpIndL1Fin hm hs hμs (c x) = c condExpIndL1Fin hm hs hμs x
          @[deprecated MeasureTheory.condExpIndL1Fin_smul (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndL1Fin_smul {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (c : ) (x : G) :
          condExpIndL1Fin hm hs hμs (c x) = c condExpIndL1Fin hm hs hμs x

          Alias of MeasureTheory.condExpIndL1Fin_smul.

          theorem MeasureTheory.condExpIndL1Fin_smul' {α : Type u_1} {F : Type u_2} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (hs : MeasurableSet s) (hμs : μ s ) (c : 𝕜) (x : F) :
          condExpIndL1Fin hm hs hμs (c x) = c condExpIndL1Fin hm hs hμs x
          @[deprecated MeasureTheory.condExpIndL1Fin_smul' (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndL1Fin_smul' {α : Type u_1} {F : Type u_2} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (hs : MeasurableSet s) (hμs : μ s ) (c : 𝕜) (x : F) :
          condExpIndL1Fin hm hs hμs (c x) = c condExpIndL1Fin hm hs hμs x

          Alias of MeasureTheory.condExpIndL1Fin_smul'.

          theorem MeasureTheory.norm_condExpIndL1Fin_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          @[deprecated MeasureTheory.norm_condExpIndL1Fin_le (since := "2025-01-21")]
          theorem MeasureTheory.norm_condexpIndL1Fin_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :

          Alias of MeasureTheory.norm_condExpIndL1Fin_le.

          theorem MeasureTheory.condExpIndL1Fin_disjoint_union {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : Disjoint s t) (x : G) :
          condExpIndL1Fin hm x = condExpIndL1Fin hm hs hμs x + condExpIndL1Fin hm ht hμt x
          def MeasureTheory.condExpIndL1 {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] [NormedSpace G] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) (s : Set α) [SigmaFinite (μ.trim hm)] (x : G) :
          (Lp G 1 μ)

          Conditional expectation of the indicator of a set, as a function in L1. Its value for sets which are not both measurable and of finite measure is not used: we set it to 0.

          Equations
            Instances For
              @[deprecated MeasureTheory.condExpIndL1 (since := "2025-01-21")]
              def MeasureTheory.condexpIndL1 {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] [NormedSpace G] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) (s : Set α) [SigmaFinite (μ.trim hm)] (x : G) :
              (Lp G 1 μ)

              Alias of MeasureTheory.condExpIndL1.


              Conditional expectation of the indicator of a set, as a function in L1. Its value for sets which are not both measurable and of finite measure is not used: we set it to 0.

              Equations
                Instances For
                  theorem MeasureTheory.condExpIndL1_of_measurableSet_of_measure_ne_top {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
                  condExpIndL1 hm μ s x = condExpIndL1Fin hm hs hμs x
                  @[deprecated MeasureTheory.condExpIndL1_of_measurableSet_of_measure_ne_top (since := "2025-01-21")]
                  theorem MeasureTheory.condexpIndL1_of_measurableSet_of_measure_ne_top {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
                  condExpIndL1 hm μ s x = condExpIndL1Fin hm hs hμs x

                  Alias of MeasureTheory.condExpIndL1_of_measurableSet_of_measure_ne_top.

                  theorem MeasureTheory.condExpIndL1_of_measure_eq_top {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hμs : μ s = ) (x : G) :
                  condExpIndL1 hm μ s x = 0
                  theorem MeasureTheory.condExpIndL1_of_not_measurableSet {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : ¬MeasurableSet s) (x : G) :
                  condExpIndL1 hm μ s x = 0
                  theorem MeasureTheory.condExpIndL1_add {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (x y : G) :
                  condExpIndL1 hm μ s (x + y) = condExpIndL1 hm μ s x + condExpIndL1 hm μ s y
                  @[deprecated MeasureTheory.condExpIndL1_add (since := "2025-01-21")]
                  theorem MeasureTheory.condexpIndL1_add {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (x y : G) :
                  condExpIndL1 hm μ s (x + y) = condExpIndL1 hm μ s x + condExpIndL1 hm μ s y

                  Alias of MeasureTheory.condExpIndL1_add.

                  theorem MeasureTheory.condExpIndL1_smul {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (c : ) (x : G) :
                  condExpIndL1 hm μ s (c x) = c condExpIndL1 hm μ s x
                  @[deprecated MeasureTheory.condExpIndL1_smul (since := "2025-01-21")]
                  theorem MeasureTheory.condexpIndL1_smul {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (c : ) (x : G) :
                  condExpIndL1 hm μ s (c x) = c condExpIndL1 hm μ s x

                  Alias of MeasureTheory.condExpIndL1_smul.

                  theorem MeasureTheory.condExpIndL1_smul' {α : Type u_1} {F : Type u_2} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (c : 𝕜) (x : F) :
                  condExpIndL1 hm μ s (c x) = c condExpIndL1 hm μ s x
                  @[deprecated MeasureTheory.condExpIndL1_smul' (since := "2025-01-21")]
                  theorem MeasureTheory.condexpIndL1_smul' {α : Type u_1} {F : Type u_2} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (c : 𝕜) (x : F) :
                  condExpIndL1 hm μ s (c x) = c condExpIndL1 hm μ s x

                  Alias of MeasureTheory.condExpIndL1_smul'.

                  theorem MeasureTheory.norm_condExpIndL1_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (x : G) :
                  @[deprecated MeasureTheory.norm_condExpIndL1_le (since := "2025-01-21")]
                  theorem MeasureTheory.norm_condexpIndL1_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (x : G) :

                  Alias of MeasureTheory.norm_condExpIndL1_le.

                  theorem MeasureTheory.continuous_condExpIndL1 {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] :
                  Continuous fun (x : G) => condExpIndL1 hm μ s x
                  @[deprecated MeasureTheory.continuous_condExpIndL1 (since := "2025-01-21")]
                  theorem MeasureTheory.continuous_condexpIndL1 {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] :
                  Continuous fun (x : G) => condExpIndL1 hm μ s x

                  Alias of MeasureTheory.continuous_condExpIndL1.

                  theorem MeasureTheory.condExpIndL1_disjoint_union {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : Disjoint s t) (x : G) :
                  condExpIndL1 hm μ (s t) x = condExpIndL1 hm μ s x + condExpIndL1 hm μ t x
                  def MeasureTheory.condExpInd {α : Type u_1} (G : Type u_4) [NormedAddCommGroup G] [NormedSpace G] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) [SigmaFinite (μ.trim hm)] (s : Set α) :
                  G →L[] (Lp G 1 μ)

                  Conditional expectation of the indicator of a set, as a linear map from G to L1.

                  Equations
                    Instances For
                      @[deprecated MeasureTheory.condExpInd (since := "2025-01-21")]
                      def MeasureTheory.condexpInd {α : Type u_1} (G : Type u_4) [NormedAddCommGroup G] [NormedSpace G] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) [SigmaFinite (μ.trim hm)] (s : Set α) :
                      G →L[] (Lp G 1 μ)

                      Alias of MeasureTheory.condExpInd.


                      Conditional expectation of the indicator of a set, as a linear map from G to L1.

                      Equations
                        Instances For
                          theorem MeasureTheory.condExpInd_ae_eq_condExpIndSMul {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
                          ((condExpInd G hm μ s) x) =ᶠ[ae μ] (condExpIndSMul hm hs hμs x)
                          theorem MeasureTheory.aestronglyMeasurable_condExpInd {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
                          AEStronglyMeasurable (↑((condExpInd G hm μ s) x)) μ
                          @[deprecated MeasureTheory.aestronglyMeasurable_condExpInd (since := "2025-01-21")]
                          theorem MeasureTheory.aestronglyMeasurable'_condexpInd {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
                          AEStronglyMeasurable (↑((condExpInd G hm μ s) x)) μ

                          Alias of MeasureTheory.aestronglyMeasurable_condExpInd.

                          @[simp]
                          theorem MeasureTheory.condExpInd_empty {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] :
                          condExpInd G hm μ = 0
                          @[deprecated MeasureTheory.condExpInd_empty (since := "2025-01-21")]
                          theorem MeasureTheory.condexpInd_empty {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] :
                          condExpInd G hm μ = 0

                          Alias of MeasureTheory.condExpInd_empty.

                          theorem MeasureTheory.condExpInd_smul' {α : Type u_1} {F : Type u_2} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (c : 𝕜) (x : F) :
                          (condExpInd F hm μ s) (c x) = c (condExpInd F hm μ s) x
                          @[deprecated MeasureTheory.condExpInd_smul' (since := "2025-01-21")]
                          theorem MeasureTheory.condexpInd_smul' {α : Type u_1} {F : Type u_2} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (c : 𝕜) (x : F) :
                          (condExpInd F hm μ s) (c x) = c (condExpInd F hm μ s) x

                          Alias of MeasureTheory.condExpInd_smul'.

                          theorem MeasureTheory.norm_condExpInd_apply_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (x : G) :
                          (condExpInd G hm μ s) x μ.real s * x
                          @[deprecated MeasureTheory.norm_condExpInd_apply_le (since := "2025-01-21")]
                          theorem MeasureTheory.norm_condexpInd_apply_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (x : G) :
                          (condExpInd G hm μ s) x μ.real s * x

                          Alias of MeasureTheory.norm_condExpInd_apply_le.

                          theorem MeasureTheory.norm_condExpInd_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] :
                          condExpInd G hm μ s μ.real s
                          @[deprecated MeasureTheory.norm_condExpInd_le (since := "2025-01-21")]
                          theorem MeasureTheory.norm_condexpInd_le {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] :
                          condExpInd G hm μ s μ.real s

                          Alias of MeasureTheory.norm_condExpInd_le.

                          theorem MeasureTheory.condExpInd_disjoint_union_apply {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : Disjoint s t) (x : G) :
                          (condExpInd G hm μ (s t)) x = (condExpInd G hm μ s) x + (condExpInd G hm μ t) x
                          theorem MeasureTheory.condExpInd_disjoint_union {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : Disjoint s t) :
                          condExpInd G hm μ (s t) = condExpInd G hm μ s + condExpInd G hm μ t
                          @[deprecated MeasureTheory.condExpInd_disjoint_union (since := "2025-01-21")]
                          theorem MeasureTheory.condexpInd_disjoint_union {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : Disjoint s t) :
                          condExpInd G hm μ (s t) = condExpInd G hm μ s + condExpInd G hm μ t

                          Alias of MeasureTheory.condExpInd_disjoint_union.

                          theorem MeasureTheory.setIntegral_condExpInd {α : Type u_1} {G' : Type u_5} [NormedAddCommGroup G'] [NormedSpace G'] [CompleteSpace G'] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (x : G') :
                          (a : α) in s, ((condExpInd G' hm μ t) x) a μ = μ.real (t s) x
                          @[deprecated MeasureTheory.setIntegral_condExpInd (since := "2025-01-21")]
                          theorem MeasureTheory.setIntegral_condexpInd {α : Type u_1} {G' : Type u_5} [NormedAddCommGroup G'] [NormedSpace G'] [CompleteSpace G'] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (x : G') :
                          (a : α) in s, ((condExpInd G' hm μ t) x) a μ = μ.real (t s) x

                          Alias of MeasureTheory.setIntegral_condExpInd.

                          theorem MeasureTheory.condExpInd_of_measurable {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (c : G) :
                          (condExpInd G hm μ s) c = indicatorConstLp 1 hμs c
                          @[deprecated MeasureTheory.condExpInd_of_measurable (since := "2025-01-21")]
                          theorem MeasureTheory.condexpInd_of_measurable {α : Type u_1} {G : Type u_4} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (c : G) :
                          (condExpInd G hm μ s) c = indicatorConstLp 1 hμs c

                          Alias of MeasureTheory.condExpInd_of_measurable.

                          theorem MeasureTheory.condExpInd_nonneg {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] {E : Type u_7} [NormedAddCommGroup E] [PartialOrder E] [NormedSpace E] [OrderedSMul E] (hs : MeasurableSet s) (hμs : μ s ) (x : E) (hx : 0 x) :
                          0 (condExpInd E hm μ s) x
                          @[deprecated MeasureTheory.condExpInd_nonneg (since := "2025-01-21")]
                          theorem MeasureTheory.condexpInd_nonneg {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [SigmaFinite (μ.trim hm)] {E : Type u_7} [NormedAddCommGroup E] [PartialOrder E] [NormedSpace E] [OrderedSMul E] (hs : MeasurableSet s) (hμs : μ s ) (x : E) (hx : 0 x) :
                          0 (condExpInd E hm μ s) x

                          Alias of MeasureTheory.condExpInd_nonneg.

                          def MeasureTheory.condExpL1CLM {α : Type u_1} (F' : Type u_3) [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) [SigmaFinite (μ.trim hm)] :
                          (Lp F' 1 μ) →L[] (Lp F' 1 μ)

                          Conditional expectation of a function as a linear map from α →₁[μ] F' to itself.

                          Equations
                            Instances For
                              @[deprecated MeasureTheory.condExpL1CLM (since := "2025-01-21")]
                              def MeasureTheory.condexpL1CLM {α : Type u_1} (F' : Type u_3) [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) [SigmaFinite (μ.trim hm)] :
                              (Lp F' 1 μ) →L[] (Lp F' 1 μ)

                              Alias of MeasureTheory.condExpL1CLM.


                              Conditional expectation of a function as a linear map from α →₁[μ] F' to itself.

                              Equations
                                Instances For
                                  theorem MeasureTheory.condExpL1CLM_smul {α : Type u_1} {F' : Type u_3} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (c : 𝕜) (f : (Lp F' 1 μ)) :
                                  (condExpL1CLM F' hm μ) (c f) = c (condExpL1CLM F' hm μ) f
                                  @[deprecated MeasureTheory.condExpL1CLM_smul (since := "2025-01-21")]
                                  theorem MeasureTheory.condexpL1CLM_smul {α : Type u_1} {F' : Type u_3} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (c : 𝕜) (f : (Lp F' 1 μ)) :
                                  (condExpL1CLM F' hm μ) (c f) = c (condExpL1CLM F' hm μ) f

                                  Alias of MeasureTheory.condExpL1CLM_smul.

                                  theorem MeasureTheory.condExpL1CLM_indicatorConstLp {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {s : Set α} (hs : MeasurableSet s) (hμs : μ s ) (x : F') :
                                  (condExpL1CLM F' hm μ) (indicatorConstLp 1 hs hμs x) = (condExpInd F' hm μ s) x
                                  theorem MeasureTheory.condExpL1CLM_indicatorConst {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {s : Set α} (hs : MeasurableSet s) (hμs : μ s ) (x : F') :
                                  (condExpL1CLM F' hm μ) (Lp.simpleFunc.indicatorConst 1 hs hμs x) = (condExpInd F' hm μ s) x
                                  theorem MeasureTheory.setIntegral_condExpL1CLM_of_measure_ne_top {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {s : Set α} (f : (Lp F' 1 μ)) (hs : MeasurableSet s) (hμs : μ s ) :
                                  (x : α) in s, ((condExpL1CLM F' hm μ) f) x μ = (x : α) in s, f x μ

                                  Auxiliary lemma used in the proof of setIntegral_condExpL1CLM.

                                  theorem MeasureTheory.setIntegral_condExpL1CLM {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {s : Set α} (f : (Lp F' 1 μ)) (hs : MeasurableSet s) :
                                  (x : α) in s, ((condExpL1CLM F' hm μ) f) x μ = (x : α) in s, f x μ

                                  The integral of the conditional expectation condExpL1CLM over an m-measurable set is equal to the integral of f on that set. See also setIntegral_condExp, the similar statement for condExp.

                                  theorem MeasureTheory.aestronglyMeasurable_condExpL1CLM {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : (Lp F' 1 μ)) :
                                  AEStronglyMeasurable (↑((condExpL1CLM F' hm μ) f)) μ
                                  @[deprecated MeasureTheory.aestronglyMeasurable_condExpL1CLM (since := "2025-01-21")]
                                  theorem MeasureTheory.aestronglyMeasurable_condexpL1CLM {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : (Lp F' 1 μ)) :
                                  AEStronglyMeasurable (↑((condExpL1CLM F' hm μ) f)) μ

                                  Alias of MeasureTheory.aestronglyMeasurable_condExpL1CLM.

                                  theorem MeasureTheory.condExpL1CLM_lpMeas {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : (lpMeas F' m 1 μ)) :
                                  (condExpL1CLM F' hm μ) f = f
                                  @[deprecated MeasureTheory.condExpL1CLM_lpMeas (since := "2025-01-21")]
                                  theorem MeasureTheory.condexpL1CLM_lpMeas {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : (lpMeas F' m 1 μ)) :
                                  (condExpL1CLM F' hm μ) f = f

                                  Alias of MeasureTheory.condExpL1CLM_lpMeas.

                                  theorem MeasureTheory.condExpL1CLM_of_aestronglyMeasurable' {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : (Lp F' 1 μ)) (hfm : AEStronglyMeasurable (↑f) μ) :
                                  (condExpL1CLM F' hm μ) f = f
                                  def MeasureTheory.condExpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) [SigmaFinite (μ.trim hm)] (f : αF') :
                                  (Lp F' 1 μ)

                                  Conditional expectation of a function, in L1. Its value is 0 if the function is not integrable. The function-valued condExp should be used instead in most cases.

                                  Equations
                                    Instances For
                                      @[deprecated MeasureTheory.condExpL1 (since := "2025-01-21")]
                                      def MeasureTheory.condexpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} (hm : m m0) (μ : Measure α) [SigmaFinite (μ.trim hm)] (f : αF') :
                                      (Lp F' 1 μ)

                                      Alias of MeasureTheory.condExpL1.


                                      Conditional expectation of a function, in L1. Its value is 0 if the function is not integrable. The function-valued condExp should be used instead in most cases.

                                      Equations
                                        Instances For
                                          theorem MeasureTheory.condExpL1_undef {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} (hf : ¬Integrable f μ) :
                                          condExpL1 hm μ f = 0
                                          @[deprecated MeasureTheory.condExpL1_undef (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_undef {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} (hf : ¬Integrable f μ) :
                                          condExpL1 hm μ f = 0

                                          Alias of MeasureTheory.condExpL1_undef.

                                          theorem MeasureTheory.condExpL1_eq {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} (hf : Integrable f μ) :
                                          condExpL1 hm μ f = (condExpL1CLM F' hm μ) (Integrable.toL1 f hf)
                                          @[deprecated MeasureTheory.condExpL1_eq (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_eq {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} (hf : Integrable f μ) :
                                          condExpL1 hm μ f = (condExpL1CLM F' hm μ) (Integrable.toL1 f hf)

                                          Alias of MeasureTheory.condExpL1_eq.

                                          @[simp]
                                          theorem MeasureTheory.condExpL1_zero {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] :
                                          condExpL1 hm μ 0 = 0
                                          @[deprecated MeasureTheory.condExpL1_zero (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_zero {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] :
                                          condExpL1 hm μ 0 = 0

                                          Alias of MeasureTheory.condExpL1_zero.

                                          @[simp]
                                          theorem MeasureTheory.condExpL1_measure_zero {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {f : αF'} (hm : m m0) :
                                          condExpL1 hm 0 f = 0
                                          @[deprecated MeasureTheory.condExpL1_measure_zero (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_measure_zero {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {f : αF'} (hm : m m0) :
                                          condExpL1 hm 0 f = 0

                                          Alias of MeasureTheory.condExpL1_measure_zero.

                                          theorem MeasureTheory.aestronglyMeasurable_condExpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} :
                                          AEStronglyMeasurable (↑(condExpL1 hm μ f)) μ
                                          @[deprecated MeasureTheory.aestronglyMeasurable_condExpL1 (since := "2025-01-21")]
                                          theorem MeasureTheory.aestronglyMeasurable_condexpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} :
                                          AEStronglyMeasurable (↑(condExpL1 hm μ f)) μ

                                          Alias of MeasureTheory.aestronglyMeasurable_condExpL1.

                                          theorem MeasureTheory.condExpL1_congr_ae {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {f g : αF'} (hm : m m0) [SigmaFinite (μ.trim hm)] (h : f =ᶠ[ae μ] g) :
                                          condExpL1 hm μ f = condExpL1 hm μ g
                                          @[deprecated MeasureTheory.condExpL1_congr_ae (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_congr_ae {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {f g : αF'} (hm : m m0) [SigmaFinite (μ.trim hm)] (h : f =ᶠ[ae μ] g) :
                                          condExpL1 hm μ f = condExpL1 hm μ g

                                          Alias of MeasureTheory.condExpL1_congr_ae.

                                          theorem MeasureTheory.integrable_condExpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : αF') :
                                          Integrable (↑(condExpL1 hm μ f)) μ
                                          @[deprecated MeasureTheory.integrable_condExpL1 (since := "2025-01-21")]
                                          theorem MeasureTheory.integrable_condexpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : αF') :
                                          Integrable (↑(condExpL1 hm μ f)) μ

                                          Alias of MeasureTheory.integrable_condExpL1.

                                          theorem MeasureTheory.setIntegral_condExpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} {s : Set α} (hf : Integrable f μ) (hs : MeasurableSet s) :
                                          (x : α) in s, (condExpL1 hm μ f) x μ = (x : α) in s, f x μ

                                          The integral of the conditional expectation condExpL1 over an m-measurable set is equal to the integral of f on that set. See also setIntegral_condExp, the similar statement for condExp.

                                          @[deprecated MeasureTheory.setIntegral_condExpL1 (since := "2025-01-21")]
                                          theorem MeasureTheory.setIntegral_condexpL1 {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} {s : Set α} (hf : Integrable f μ) (hs : MeasurableSet s) :
                                          (x : α) in s, (condExpL1 hm μ f) x μ = (x : α) in s, f x μ

                                          Alias of MeasureTheory.setIntegral_condExpL1.


                                          The integral of the conditional expectation condExpL1 over an m-measurable set is equal to the integral of f on that set. See also setIntegral_condExp, the similar statement for condExp.

                                          theorem MeasureTheory.condExpL1_add {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f g : αF'} (hf : Integrable f μ) (hg : Integrable g μ) :
                                          condExpL1 hm μ (f + g) = condExpL1 hm μ f + condExpL1 hm μ g
                                          @[deprecated MeasureTheory.condExpL1_add (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_add {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f g : αF'} (hf : Integrable f μ) (hg : Integrable g μ) :
                                          condExpL1 hm μ (f + g) = condExpL1 hm μ f + condExpL1 hm μ g

                                          Alias of MeasureTheory.condExpL1_add.

                                          theorem MeasureTheory.condExpL1_neg {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : αF') :
                                          condExpL1 hm μ (-f) = -condExpL1 hm μ f
                                          @[deprecated MeasureTheory.condExpL1_neg (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_neg {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (f : αF') :
                                          condExpL1 hm μ (-f) = -condExpL1 hm μ f

                                          Alias of MeasureTheory.condExpL1_neg.

                                          theorem MeasureTheory.condExpL1_smul {α : Type u_1} {F' : Type u_3} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (c : 𝕜) (f : αF') :
                                          condExpL1 hm μ (c f) = c condExpL1 hm μ f
                                          @[deprecated MeasureTheory.condExpL1_smul (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_smul {α : Type u_1} {F' : Type u_3} {𝕜 : Type u_6} [RCLike 𝕜] [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] (c : 𝕜) (f : αF') :
                                          condExpL1 hm μ (c f) = c condExpL1 hm μ f

                                          Alias of MeasureTheory.condExpL1_smul.

                                          theorem MeasureTheory.condExpL1_sub {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f g : αF'} (hf : Integrable f μ) (hg : Integrable g μ) :
                                          condExpL1 hm μ (f - g) = condExpL1 hm μ f - condExpL1 hm μ g
                                          @[deprecated MeasureTheory.condExpL1_sub (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_sub {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f g : αF'} (hf : Integrable f μ) (hg : Integrable g μ) :
                                          condExpL1 hm μ (f - g) = condExpL1 hm μ f - condExpL1 hm μ g

                                          Alias of MeasureTheory.condExpL1_sub.

                                          theorem MeasureTheory.condExpL1_of_aestronglyMeasurable' {α : Type u_1} {F' : Type u_3} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {f : αF'} (hfm : AEStronglyMeasurable f μ) (hfi : Integrable f μ) :
                                          (condExpL1 hm μ f) =ᶠ[ae μ] f
                                          theorem MeasureTheory.condExpL1_mono {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {E : Type u_7} [NormedAddCommGroup E] [PartialOrder E] [OrderClosedTopology E] [IsOrderedAddMonoid E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] {f g : αE} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᶠ[ae μ] g) :
                                          (condExpL1 hm μ f) ≤ᶠ[ae μ] (condExpL1 hm μ g)
                                          @[deprecated MeasureTheory.condExpL1_mono (since := "2025-01-21")]
                                          theorem MeasureTheory.condexpL1_mono {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {hm : m m0} [SigmaFinite (μ.trim hm)] {E : Type u_7} [NormedAddCommGroup E] [PartialOrder E] [OrderClosedTopology E] [IsOrderedAddMonoid E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] {f g : αE} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᶠ[ae μ] g) :
                                          (condExpL1 hm μ f) ≤ᶠ[ae μ] (condExpL1 hm μ g)

                                          Alias of MeasureTheory.condExpL1_mono.