Documentation

Mathlib.NumberTheory.NumberField.CanonicalEmbedding.ConvexBody

Convex Bodies #

The file contains the definitions of several convex bodies lying in the mixed space ℝ^r₁ × ℂ^r₂ associated to a number field of signature K and proves several existence theorems by applying Minkowski Convex Body Theorem to those.

Main definitions and results #

Tags #

number field, infinite places

@[reducible, inline]

The convex body defined by f: the set of points x : E such that ‖x w‖ < f w for all infinite places w.

Equations
    Instances For
      theorem NumberField.mixedEmbedding.convexBodyLT_mem (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) {x : K} :
      (mixedEmbedding K) x convexBodyLT K f ∀ (w : InfinitePlace K), w x < (f w)
      @[reducible, inline]

      The fudge factor that appears in the formula for the volume of convexBodyLT.

      Equations
        Instances For

          The volume of (ConvexBodyLt K f) where convexBodyLT K f is the set of points x such that ‖x w‖ < f w for all infinite places w.

          theorem NumberField.mixedEmbedding.adjust_f (K : Type u_1) [Field K] {f : InfinitePlace KNNReal} [NumberField K] {w₁ : InfinitePlace K} (B : NNReal) (hf : ∀ (w : InfinitePlace K), w w₁f w 0) :
          ∃ (g : InfinitePlace KNNReal), (∀ (w : InfinitePlace K), w w₁g w = f w) w : InfinitePlace K, g w ^ w.mult = B

          This is a technical result: quite often, we want to impose conditions at all infinite places but one and choose the value at the remaining place so that we can apply exists_ne_zero_mem_ringOfIntegers_lt.

          @[reducible, inline]

          A version of convexBodyLT with an additional condition at a fixed complex place. This is needed to ensure the element constructed is not real, see for example exists_primitive_element_lt_of_isComplex.

          Equations
            Instances For
              theorem NumberField.mixedEmbedding.convexBodyLT'_mem (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) (w₀ : { w : InfinitePlace K // w.IsComplex }) {x : K} :
              (mixedEmbedding K) x convexBodyLT' K f w₀ (∀ (w : InfinitePlace K), w w₀w x < (f w)) |((↑w₀).embedding x).re| < 1 |((↑w₀).embedding x).im| < (f w₀) ^ 2
              theorem NumberField.mixedEmbedding.convexBodyLT'_neg_mem (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) (w₀ : { w : InfinitePlace K // w.IsComplex }) (x : mixedSpace K) (hx : x convexBodyLT' K f w₀) :
              -x convexBodyLT' K f w₀
              @[reducible, inline]

              The fudge factor that appears in the formula for the volume of convexBodyLT'.

              Equations
                Instances For
                  @[reducible, inline]
                  noncomputable abbrev NumberField.mixedEmbedding.convexBodySumFun {K : Type u_1} [Field K] [NumberField K] (x : mixedSpace K) :

                  The function that sends x : mixedSpace K to ∑ w, ‖x.1 w‖ + 2 * ∑ w, ‖x.2 w‖. It defines a norm and it used to define convexBodySum.

                  Equations
                    Instances For
                      @[reducible, inline]

                      The convex body equal to the set of points x : mixedSpace K such that ∑ w real, ‖x w‖ + 2 * ∑ w complex, ‖x w‖ ≤ B.

                      Equations
                        Instances For
                          theorem NumberField.mixedEmbedding.convexBodySum_mem (K : Type u_1) [Field K] [NumberField K] (B : ) {x : K} :
                          (mixedEmbedding K) x convexBodySum K B w : InfinitePlace K, w.mult * w x B
                          @[reducible, inline]

                          The fudge factor that appears in the formula for the volume of convexBodyLt.

                          Equations
                            Instances For

                              The bound that appears in Minkowski Convex Body theorem, see MeasureTheory.exists_ne_zero_mem_lattice_of_measure_mul_two_pow_lt_measure. See NumberField.mixedEmbedding.volume_fundamentalDomain_idealLatticeBasis_eq and NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis for the computation of volume (fundamentalDomain (idealLatticeBasis K)).

                              Equations
                                Instances For

                                  Let I be a fractional ideal of K. Assume that f : InfinitePlace K → ℝ≥0 is such that minkowskiBound K I < volume (convexBodyLT K f) where convexBodyLT K f is the set of points x such that ‖x w‖ < f w for all infinite places w (see convexBodyLT_volume for the computation of this volume), then there exists a nonzero algebraic number a in I such that w a < f w for all infinite places w.

                                  theorem NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt' (K : Type u_1) [Field K] [NumberField K] {f : InfinitePlace KNNReal} (I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ) (w₀ : { w : InfinitePlace K // w.IsComplex }) (h : minkowskiBound K I < MeasureTheory.volume (convexBodyLT' K f w₀)) :
                                  aI, a 0 (∀ (w : InfinitePlace K), w w₀w a < (f w)) |((↑w₀).embedding a).re| < 1 |((↑w₀).embedding a).im| < (f w₀) ^ 2

                                  A version of exists_ne_zero_mem_ideal_lt where the absolute value of the real part of a is smaller than 1 at some fixed complex place. This is useful to ensure that a is not real.

                                  A version of exists_ne_zero_mem_ideal_lt for the ring of integers of K.

                                  theorem NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt' (K : Type u_1) [Field K] [NumberField K] {f : InfinitePlace KNNReal} (w₀ : { w : InfinitePlace K // w.IsComplex }) (h : minkowskiBound K 1 < MeasureTheory.volume (convexBodyLT' K f w₀)) :
                                  ∃ (a : RingOfIntegers K), a 0 (∀ (w : InfinitePlace K), w w₀w a < (f w)) |((↑w₀).embedding a).re| < 1 |((↑w₀).embedding a).im| < (f w₀) ^ 2

                                  A version of exists_ne_zero_mem_ideal_lt' for the ring of integers of K.

                                  theorem NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal (K : Type u_1) [Field K] [NumberField K] {w₀ : InfinitePlace K} (hw₀ : w₀.IsReal) {B : NNReal} (hB : minkowskiBound K 1 < (convexBodyLTFactor K) * B) :
                                  ∃ (a : RingOfIntegers K), a = ∀ (w : InfinitePlace K), w a < (max B 1)
                                  theorem NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex (K : Type u_1) [Field K] [NumberField K] {w₀ : InfinitePlace K} (hw₀ : w₀.IsComplex) {B : NNReal} (hB : minkowskiBound K 1 < (convexBodyLT'Factor K) * B) :
                                  ∃ (a : RingOfIntegers K), a = ∀ (w : InfinitePlace K), w a < (1 + B ^ 2)

                                  Let I be a fractional ideal of K. Assume that B : ℝ is such that minkowskiBound K I < volume (convexBodySum K B) where convexBodySum K B is the set of points x such that ∑ w real, ‖x w‖ + 2 * ∑ w complex, ‖x w‖ ≤ B (see convexBodySum_volume for the computation of this volume), then there exists a nonzero algebraic number a in I such that |Norm a| < (B / d) ^ d where d is the degree of K.