Documentation

Mathlib.Order.Category.BddDistLat

The category of bounded distributive lattices #

This defines BddDistLat, the category of bounded distributive lattices.

Note that this category is sometimes called DistLat when being a lattice is understood to entail having a bottom and a top element.

structure BddDistLatextends DistLat :
Type (u_1 + 1)

The category of bounded distributive lattices with bounded lattice morphisms.

Instances For
    @[reducible, inline]

    Construct a bundled BddDistLat from a BoundedOrder DistribLattice.

    Equations
      Instances For
        theorem BddDistLat.coe_of (α : Type u_1) [DistribLattice α] [BoundedOrder α] :
        (of α).toDistLat = α
        structure BddDistLat.Hom (X Y : BddDistLat) :

        The type of morphisms in BddDistLat R.

        Instances For
          theorem BddDistLat.Hom.ext {X Y : BddDistLat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          theorem BddDistLat.Hom.ext_iff {X Y : BddDistLat} {x y : X.Hom Y} :
          x = y x.hom' = y.hom'
          @[reducible, inline]

          Turn a morphism in BddDistLat back into a BoundedLatticeHom.

          Equations
            Instances For
              @[reducible, inline]

              Typecheck a BoundedLatticeHom as a morphism in BddDistLat.

              Equations
                Instances For

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      @[simp]
                      theorem BddDistLat.hom_ext {X Y : BddDistLat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem BddDistLat.hom_ext_iff {X Y : BddDistLat} {f g : X Y} :
                      @[simp]
                      theorem BddDistLat.ofHom_hom {X Y : BddDistLat} (f : X Y) :

                      Turn a BddDistLat into a BddLat by forgetting it is distributive.

                      Equations
                        Instances For
                          def BddDistLat.Iso.mk {α β : BddDistLat} (e : α.toDistLat ≃o β.toDistLat) :
                          α β

                          Constructs an equivalence between bounded distributive lattices from an order isomorphism between them.

                          Equations
                            Instances For
                              @[simp]
                              theorem BddDistLat.Iso.mk_inv {α β : BddDistLat} (e : α.toDistLat ≃o β.toDistLat) :
                              (mk e).inv = ofHom (have __src := { toFun := e.symm, map_sup' := , map_inf' := }; { toFun := e.symm, map_sup' := , map_inf' := , map_top' := , map_bot' := })
                              @[simp]
                              theorem BddDistLat.Iso.mk_hom {α β : BddDistLat} (e : α.toDistLat ≃o β.toDistLat) :
                              (mk e).hom = ofHom (have __src := { toFun := e, map_sup' := , map_inf' := }; { toFun := e, map_sup' := , map_inf' := , map_top' := , map_bot' := })
                              @[simp]
                              theorem BddDistLat.dual_map {X✝ Y✝ : BddDistLat} (f : X✝ Y✝) :

                              The equivalence between BddDistLat and itself induced by OrderDual both ways.

                              Equations
                                Instances For