Documentation

Mathlib.Order.Category.FinBddDistLat

The category of finite bounded distributive lattices #

This file defines FinBddDistLat, the category of finite distributive lattices with bounded lattice homomorphisms.

structure FinBddDistLatextends BddDistLat :
Type (u_1 + 1)

The category of finite distributive lattices with bounded lattice morphisms.

Instances For
    @[reducible, inline]

    Construct a bundled FinBddDistLat from a Fintype BoundedOrder DistribLattice.

    Equations
      Instances For
        @[reducible, inline]

        Construct a bundled FinBddDistLat from a Nonempty Fintype DistribLattice.

        Equations
          Instances For
            structure FinBddDistLat.Hom (X Y : FinBddDistLat) :

            The type of morphisms in FinBddDistLat R.

            Instances For
              theorem FinBddDistLat.Hom.ext {X Y : FinBddDistLat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
              x = y
              theorem FinBddDistLat.Hom.ext_iff {X Y : FinBddDistLat} {x y : X.Hom Y} :
              x = y x.hom' = y.hom'
              @[reducible, inline]

              Turn a morphism in FinBddDistLat back into a BoundedLatticeHom.

              Equations
                Instances For
                  @[reducible, inline]

                  Typecheck a BoundedLatticeHom as a morphism in FinBddDistLat.

                  Equations
                    Instances For

                      Use the ConcreteCategory.hom projection for @[simps] lemmas.

                      Equations
                        Instances For

                          The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                          theorem FinBddDistLat.hom_ext {X Y : FinBddDistLat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                          f = g
                          theorem FinBddDistLat.hom_ext_iff {X Y : FinBddDistLat} {f g : X Y} :
                          @[simp]
                          theorem FinBddDistLat.ofHom_hom {X Y : FinBddDistLat} (f : X Y) :
                          def FinBddDistLat.Iso.mk {α β : FinBddDistLat} (e : α.toDistLat ≃o β.toDistLat) :
                          α β

                          Constructs an equivalence between finite distributive lattices from an order isomorphism between them.

                          Equations
                            Instances For
                              @[simp]
                              theorem FinBddDistLat.Iso.mk_hom {α β : FinBddDistLat} (e : α.toDistLat ≃o β.toDistLat) :
                              (mk e).hom = ofHom (have __src := { toFun := e, map_sup' := , map_inf' := }; { toFun := e, map_sup' := , map_inf' := , map_top' := , map_bot' := })
                              @[simp]
                              theorem FinBddDistLat.Iso.mk_inv {α β : FinBddDistLat} (e : α.toDistLat ≃o β.toDistLat) :
                              (mk e).inv = ofHom (have __src := { toFun := e.symm, map_sup' := , map_inf' := }; { toFun := e.symm, map_sup' := , map_inf' := , map_top' := , map_bot' := })
                              @[simp]
                              theorem FinBddDistLat.dual_map {X✝ Y✝ : FinBddDistLat} (f : X✝ Y✝) :

                              The equivalence between FinBddDistLat and itself induced by OrderDual both ways.

                              Equations
                                Instances For