Documentation

Mathlib.Order.Category.FinPartOrd

The category of finite partial orders #

This defines FinPartOrd, the category of finite partial orders.

Note: FinPartOrd is not a subcategory of BddOrd because finite orders are not necessarily bounded.

TODO #

FinPartOrd is equivalent to a small category.

structure FinPartOrdextends PartOrd :
Type (u_1 + 1)

The category of finite partial orders with monotone functions.

Instances For
    @[reducible, inline]
    abbrev FinPartOrd.of (α : Type u_1) [PartialOrder α] [Fintype α] :

    Construct a bundled FinPartOrd from PartialOrder + Fintype.

    Equations
      Instances For
        @[reducible, inline]
        abbrev FinPartOrd.ofHom {X Y : Type u} [PartialOrder X] [Fintype X] [PartialOrder Y] [Fintype Y] (f : X →o Y) :
        of X of Y

        Typecheck a OrderHom as a morphism in FinPartOrd.

        Equations
          Instances For
            theorem FinPartOrd.hom_ext {X Y : FinPartOrd} {f g : X Y} (hf : PartOrd.Hom.hom f = PartOrd.Hom.hom g) :
            f = g
            @[simp]
            theorem FinPartOrd.hom_ofHom {X Y : Type u} [PartialOrder X] [Fintype X] [PartialOrder Y] [Fintype Y] (f : X →o Y) :
            @[simp]
            theorem FinPartOrd.ofHom_hom {X Y : FinPartOrd} (f : X Y) :
            def FinPartOrd.Iso.mk {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
            α β

            Constructs an isomorphism of finite partial orders from an order isomorphism between them.

            Equations
              Instances For
                @[simp]
                theorem FinPartOrd.Iso.mk_inv {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
                (mk e).inv = ofHom e.symm
                @[simp]
                theorem FinPartOrd.Iso.mk_hom {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
                (mk e).hom = ofHom e
                @[simp]
                theorem FinPartOrd.dual_map {X✝ Y✝ : FinPartOrd} (f : X✝ Y✝) :

                The equivalence between FinPartOrd and itself induced by OrderDual both ways.

                Equations
                  Instances For