Documentation

Mathlib.Order.Category.HeytAlg

The category of Heyting algebras #

This file defines HeytAlg, the category of Heyting algebras.

structure HeytAlg :
Type (u_1 + 1)

The category of Heyting algebras.

Instances For
    @[reducible, inline]
    abbrev HeytAlg.of (X : Type u_1) [HeytingAlgebra X] :

    Construct a bundled HeytAlg from the underlying type and typeclass.

    Equations
      Instances For
        structure HeytAlg.Hom (X Y : HeytAlg) :

        The type of morphisms in HeytAlg R.

        Instances For
          theorem HeytAlg.Hom.ext_iff {X Y : HeytAlg} {x y : X.Hom Y} :
          x = y x.hom' = y.hom'
          theorem HeytAlg.Hom.ext {X Y : HeytAlg} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          @[reducible, inline]
          abbrev HeytAlg.Hom.hom {X Y : HeytAlg} (f : X.Hom Y) :
          HeytingHom X Y

          Turn a morphism in HeytAlg back into a HeytingHom.

          Equations
            Instances For
              @[reducible, inline]
              abbrev HeytAlg.ofHom {X Y : Type u} [HeytingAlgebra X] [HeytingAlgebra Y] (f : HeytingHom X Y) :
              of X of Y

              Typecheck a HeytingHom as a morphism in HeytAlg.

              Equations
                Instances For
                  def HeytAlg.Hom.Simps.hom (X Y : HeytAlg) (f : X.Hom Y) :
                  HeytingHom X Y

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      theorem HeytAlg.ext {X Y : HeytAlg} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                      f = g
                      theorem HeytAlg.coe_of (X : Type u) [HeytingAlgebra X] :
                      (of X) = X
                      @[simp]
                      theorem HeytAlg.hom_comp {X Y Z : HeytAlg} (f : X Y) (g : Y Z) :
                      theorem HeytAlg.hom_ext {X Y : HeytAlg} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem HeytAlg.hom_ext_iff {X Y : HeytAlg} {f g : X Y} :
                      @[simp]
                      theorem HeytAlg.hom_ofHom {X Y : Type u} [HeytingAlgebra X] [HeytingAlgebra Y] (f : HeytingHom X Y) :
                      @[simp]
                      theorem HeytAlg.ofHom_hom {X Y : HeytAlg} (f : X Y) :
                      @[simp]
                      theorem HeytAlg.hasForgetToLat_forget₂_map {X✝ Y✝ : HeytAlg} (f : X✝ Y✝) :
                      CategoryTheory.HasForget₂.forget₂.map f = BddDistLat.ofHom (have __src := { toFun := (Hom.hom f), map_sup' := , map_inf' := }; { toFun := (Hom.hom f), map_sup' := , map_inf' := , map_top' := , map_bot' := })
                      def HeytAlg.Iso.mk {α β : HeytAlg} (e : α ≃o β) :
                      α β

                      Constructs an isomorphism of Heyting algebras from an order isomorphism between them.

                      Equations
                        Instances For
                          @[simp]
                          theorem HeytAlg.Iso.mk_inv {α β : HeytAlg} (e : α ≃o β) :
                          (mk e).inv = ofHom { toFun := e.symm, map_sup' := , map_inf' := , map_bot' := , map_himp' := }
                          @[simp]
                          theorem HeytAlg.Iso.mk_hom {α β : HeytAlg} (e : α ≃o β) :
                          (mk e).hom = ofHom { toFun := e, map_sup' := , map_inf' := , map_bot' := , map_himp' := }