Heyting algebra morphisms #
A Heyting homomorphism between two Heyting algebras is a bounded lattice homomorphism that preserves Heyting implication.
We use the DFunLike
design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
Types of morphisms #
HeytingHom
: Heyting homomorphisms.CoheytingHom
: Co-Heyting homomorphisms.BiheytingHom
: Bi-Heyting homomorphisms.
Typeclasses #
The type of Heyting homomorphisms from α
to β
. Bounded lattice homomorphisms that preserve
Heyting implication.
- toFun : α → β
The proposition that a Heyting homomorphism preserves the bottom element.
The proposition that a Heyting homomorphism preserves the Heyting implication.
Instances For
The type of co-Heyting homomorphisms from α
to β
. Bounded lattice homomorphisms that
preserve difference.
- toFun : α → β
The proposition that a co-Heyting homomorphism preserves the top element.
The proposition that a co-Heyting homomorphism preserves the difference operation.
Instances For
The type of bi-Heyting homomorphisms from α
to β
. Bounded lattice homomorphisms that
preserve Heyting implication and difference.
- toFun : α → β
The proposition that a bi-Heyting homomorphism preserves the Heyting implication.
The proposition that a bi-Heyting homomorphism preserves the difference operation.
Instances For
HeytingHomClass F α β
states that F
is a type of Heyting homomorphisms.
You should extend this class when you extend HeytingHom
.
The proposition that a Heyting homomorphism preserves the bottom element.
The proposition that a Heyting homomorphism preserves the Heyting implication.
Instances
CoheytingHomClass F α β
states that F
is a type of co-Heyting homomorphisms.
You should extend this class when you extend CoheytingHom
.
The proposition that a co-Heyting homomorphism preserves the top element.
The proposition that a co-Heyting homomorphism preserves the difference operation.
Instances
BiheytingHomClass F α β
states that F
is a type of bi-Heyting homomorphisms.
You should extend this class when you extend BiheytingHom
.
The proposition that a bi-Heyting homomorphism preserves the Heyting implication.
The proposition that a bi-Heyting homomorphism preserves the difference operation.
Instances
This section passes in some instances implicitly. See note [implicit instance arguments]
Equations
Equations
Equations
Equations
Copy of a HeytingHom
with a new toFun
equal to the old one. Useful to fix definitional
equalities.
Equations
Instances For
Equations
Equations
Composition of HeytingHom
s as a HeytingHom
.
Equations
Instances For
Equations
Copy of a CoheytingHom
with a new toFun
equal to the old one. Useful to fix definitional
equalities.
Equations
Instances For
Equations
Equations
Composition of CoheytingHom
s as a CoheytingHom
.
Equations
Instances For
Equations
Copy of a BiheytingHom
with a new toFun
equal to the old one. Useful to fix definitional
equalities.
Equations
Instances For
Equations
Equations
Composition of BiheytingHom
s as a BiheytingHom
.