Documentation

Mathlib.Order.Category.NonemptyFinLinOrd

Nonempty finite linear orders #

This defines NonemptyFinLinOrd, the category of nonempty finite linear orders with monotone maps. This is the index category for simplicial objects.

Note: NonemptyFinLinOrd is not a subcategory of FinBddDistLat because its morphisms do not preserve and .

structure NonemptyFinLinOrdextends LinOrd :
Type (u_1 + 1)

The category of nonempty finite linear orders.

Instances For
    @[reducible, inline]

    Construct a bundled NonemptyFinLinOrd from the underlying type and typeclass.

    Equations
      Instances For
        theorem NonemptyFinLinOrd.coe_of (α : Type u_1) [Nonempty α] [Fintype α] [LinearOrder α] :
        (of α).toLinOrd = α
        @[reducible, inline]
        abbrev NonemptyFinLinOrd.ofHom {X Y : Type u} [Nonempty X] [LinearOrder X] [Fintype X] [Nonempty Y] [LinearOrder Y] [Fintype Y] (f : X →o Y) :
        of X of Y

        Typecheck a OrderHom as a morphism in NonemptyFinLinOrd.

        Equations
          Instances For
            @[simp]
            def NonemptyFinLinOrd.Iso.mk {α β : NonemptyFinLinOrd} (e : α.toLinOrd ≃o β.toLinOrd) :
            α β

            Constructs an equivalence between nonempty finite linear orders from an order isomorphism between them.

            Equations
              Instances For
                @[simp]
                theorem NonemptyFinLinOrd.Iso.mk_hom {α β : NonemptyFinLinOrd} (e : α.toLinOrd ≃o β.toLinOrd) :
                (mk e).hom = ofHom e
                @[simp]
                theorem NonemptyFinLinOrd.Iso.mk_inv {α β : NonemptyFinLinOrd} (e : α.toLinOrd ≃o β.toLinOrd) :
                (mk e).inv = ofHom e.symm
                @[simp]

                The equivalence between NonemptyFinLinOrd and itself induced by OrderDual both ways.

                Equations
                  Instances For
                    def Fin.hom_succ {n : } (i : Fin n) :

                    The generating arrow i ⟶ i+1 in the category Fin n

                    Equations
                      Instances For