Documentation

Mathlib.Order.Fin.Finset

Order isomorphisms from Fin to finsets #

We define order isomorphisms like Fin.orderIsoTriple from Fin 3 to the finset {a, b, c} when a < b and b < c.

Future works #

noncomputable def Fin.orderIsoSingleton {α : Type u_1} [Preorder α] (a : α) :
Fin 1 ≃o { x : α // x {a} }

This is the order isomorphism from Fin 1 to a finset {a}.

Equations
    Instances For
      @[simp]
      theorem Fin.orderIsoSingleton_apply {α : Type u_1} [Preorder α] (a : α) (i : Fin 1) :
      ((orderIsoSingleton a) i) = a
      noncomputable def Fin.orderIsoPair {α : Type u_1} [Preorder α] [DecidableEq α] (a b : α) (hab : a < b) :
      Fin 2 ≃o { x : α // x {a, b} }

      This is the order isomorphism from Fin 2 to a finset {a, b} when a < b.

      Equations
        Instances For
          @[simp]
          theorem Fin.orderIsoPair_zero {α : Type u_1} [Preorder α] [DecidableEq α] (a b : α) (hab : a < b) :
          ((orderIsoPair a b hab) 0) = a
          @[simp]
          theorem Fin.orderIsoPair_one {α : Type u_1} [Preorder α] [DecidableEq α] (a b : α) (hab : a < b) :
          ((orderIsoPair a b hab) 1) = b
          noncomputable def Fin.orderIsoTriple {α : Type u_1} [Preorder α] [DecidableEq α] (a b c : α) (hab : a < b) (hbc : b < c) :
          Fin 3 ≃o { x : α // x {a, b, c} }

          This is the order isomorphism from Fin 3 to a finset {a, b, c} when a < b and b < c.

          Equations
            Instances For
              @[simp]
              theorem Fin.orderIsoTriple_zero {α : Type u_1} [Preorder α] [DecidableEq α] (a b c : α) (hab : a < b) (hbc : b < c) :
              ((orderIsoTriple a b c hab hbc) 0) = a
              @[simp]
              theorem Fin.orderIsoTriple_one {α : Type u_1} [Preorder α] [DecidableEq α] (a b c : α) (hab : a < b) (hbc : b < c) :
              ((orderIsoTriple a b c hab hbc) 1) = b
              @[simp]
              theorem Fin.orderIsoTriple_two {α : Type u_1} [Preorder α] [DecidableEq α] (a b c : α) (hab : a < b) (hbc : b < c) :
              ((orderIsoTriple a b c hab hbc) 2) = c