Documentation

Mathlib.Order.PropInstances

The order on Prop #

Instances on Prop such as DistribLattice, BoundedOrder, LinearOrder.

Propositions form a distributive lattice.

Equations

    Propositions form a bounded order.

    Equations
      @[simp]
      instance Prop.le_isTotal :
      IsTotal Prop fun (x1 x2 : Prop) => x1 x2
      noncomputable instance Prop.linearOrder :
      Equations
        @[simp]
        theorem sup_Prop_eq :
        (fun (x1 x2 : Prop) => max x1 x2) = fun (x1 x2 : Prop) => x1 x2
        @[simp]
        theorem inf_Prop_eq :
        (fun (x1 x2 : Prop) => min x1 x2) = fun (x1 x2 : Prop) => x1 x2
        theorem Pi.disjoint_iff {ι : Type u_1} {α' : ιType u_2} [(i : ι) → PartialOrder (α' i)] [(i : ι) → OrderBot (α' i)] {f g : (i : ι) → α' i} :
        Disjoint f g ∀ (i : ι), Disjoint (f i) (g i)
        theorem Pi.codisjoint_iff {ι : Type u_1} {α' : ιType u_2} [(i : ι) → PartialOrder (α' i)] [(i : ι) → OrderTop (α' i)] {f g : (i : ι) → α' i} :
        Codisjoint f g ∀ (i : ι), Codisjoint (f i) (g i)
        theorem Pi.isCompl_iff {ι : Type u_1} {α' : ιType u_2} [(i : ι) → PartialOrder (α' i)] [(i : ι) → BoundedOrder (α' i)] {f g : (i : ι) → α' i} :
        IsCompl f g ∀ (i : ι), IsCompl (f i) (g i)
        @[simp]
        theorem Prop.disjoint_iff {P Q : Prop} :
        Disjoint P Q ¬(P Q)
        @[simp]
        theorem Prop.codisjoint_iff {P Q : Prop} :
        @[simp]
        theorem Prop.isCompl_iff {P Q : Prop} :
        IsCompl P Q ¬(P Q)
        Equations
          Equations