Documentation

Mathlib.Order.Shrink

Order instances on Shrink #

If α : Type v is u-small, we transport various order related instances on α to Shrink.{u} α.

Equations
    noncomputable def orderIsoShrink (α : Type v) [Small.{u, v} α] [Preorder α] :

    The order isomorphism α ≃o Shrink.{u} α.

    Equations
      Instances For
        @[simp]
        theorem orderIsoShrink_apply {α : Type v} [Small.{u, v} α] [Preorder α] (a : α) :
        @[simp]
        noncomputable instance instLinearOrderShrink {α : Type v} [Small.{u, v} α] [LinearOrder α] :
        Equations
          noncomputable instance instBotShrink {α : Type v} [Small.{u, v} α] [Bot α] :
          Equations
            @[simp]
            theorem equivShrink_bot {α : Type v} [Small.{u, v} α] [Bot α] :
            @[simp]
            theorem equivShrink_symm_bot {α : Type v} [Small.{u, v} α] [Bot α] :
            noncomputable instance instTopShrink {α : Type v} [Small.{u, v} α] [Top α] :
            Equations
              @[simp]
              theorem equivShrink_top {α : Type v} [Small.{u, v} α] [Top α] :
              @[simp]
              theorem equivShrink_symm_top {α : Type v} [Small.{u, v} α] [Top α] :
              noncomputable instance instOrderBotShrink {α : Type v} [Small.{u, v} α] [Preorder α] [OrderBot α] :
              Equations
                noncomputable instance instOrderTopShrink {α : Type v} [Small.{u, v} α] [Preorder α] [OrderTop α] :
                Equations
                  noncomputable instance instSuccOrderShrink {α : Type v} [Small.{u, v} α] [Preorder α] [SuccOrder α] :
                  Equations
                    noncomputable instance instPredOrderShrink {α : Type v} [Small.{u, v} α] [Preorder α] [PredOrder α] :
                    Equations