Documentation

Mathlib.Probability.Distributions.Gamma

Gamma distributions over ℝ #

Define the gamma measure over the reals.

Main definitions #

theorem lintegral_Iic_eq_lintegral_Iio_add_Icc {y z : } (f : ENNReal) (hzy : z y) :
∫⁻ (x : ) in Set.Iic y, f x = (∫⁻ (x : ) in Set.Iio z, f x) + ∫⁻ (x : ) in Set.Icc z y, f x

A Lebesgue Integral from -∞ to y can be expressed as the sum of one from -∞ to 0 and 0 to x

noncomputable def ProbabilityTheory.gammaPDFReal (a r x : ) :

The pdf of the gamma distribution depending on its scale and rate

Equations
    Instances For
      noncomputable def ProbabilityTheory.gammaPDF (a r x : ) :

      The pdf of the gamma distribution, as a function valued in ℝ≥0∞

      Equations
        Instances For
          theorem ProbabilityTheory.gammaPDF_eq (a r x : ) :
          gammaPDF a r x = ENNReal.ofReal (if 0 x then r ^ a / Real.Gamma a * x ^ (a - 1) * Real.exp (-(r * x)) else 0)
          theorem ProbabilityTheory.gammaPDF_of_neg {a r x : } (hx : x < 0) :
          gammaPDF a r x = 0
          theorem ProbabilityTheory.gammaPDF_of_nonneg {a r x : } (hx : 0 x) :
          gammaPDF a r x = ENNReal.ofReal (r ^ a / Real.Gamma a * x ^ (a - 1) * Real.exp (-(r * x)))
          theorem ProbabilityTheory.lintegral_gammaPDF_of_nonpos {x a r : } (hx : x 0) :
          ∫⁻ (y : ) in Set.Iio x, gammaPDF a r y = 0

          The Lebesgue integral of the gamma pdf over nonpositive reals equals 0

          The gamma pdf is measurable.

          theorem ProbabilityTheory.gammaPDFReal_pos {x a r : } (ha : 0 < a) (hr : 0 < r) (hx : 0 < x) :
          0 < gammaPDFReal a r x

          The gamma pdf is positive for all positive reals

          theorem ProbabilityTheory.gammaPDFReal_nonneg {a r : } (ha : 0 < a) (hr : 0 < r) (x : ) :

          The gamma pdf is nonnegative

          @[simp]
          theorem ProbabilityTheory.lintegral_gammaPDF_eq_one {a r : } (ha : 0 < a) (hr : 0 < r) :
          ∫⁻ (x : ), gammaPDF a r x = 1

          The pdf of the gamma distribution integrates to 1

          Measure defined by the gamma distribution

          Equations
            Instances For

              CDF of the gamma distribution

              Equations
                Instances For
                  theorem ProbabilityTheory.gammaCDFReal_eq_integral {a r : } (ha : 0 < a) (hr : 0 < r) (x : ) :
                  (gammaCDFReal a r) x = (x : ) in Set.Iic x, gammaPDFReal a r x
                  theorem ProbabilityTheory.gammaCDFReal_eq_lintegral {a r : } (ha : 0 < a) (hr : 0 < r) (x : ) :
                  (gammaCDFReal a r) x = (∫⁻ (x : ) in Set.Iic x, gammaPDF a r x).toReal