Documentation

Mathlib.Probability.Distributions.Gaussian.Real

Gaussian distributions over ℝ #

We define a Gaussian measure over the reals.

Main definitions #

Main results #

noncomputable def ProbabilityTheory.gaussianPDFReal (μ : ) (v : NNReal) (x : ) :

Probability density function of the gaussian distribution with mean μ and variance v.

Equations
    Instances For
      theorem ProbabilityTheory.gaussianPDFReal_def (μ : ) (v : NNReal) :
      gaussianPDFReal μ v = fun (x : ) => ((2 * Real.pi * v))⁻¹ * Real.exp (-(x - μ) ^ 2 / (2 * v))
      theorem ProbabilityTheory.gaussianPDFReal_pos (μ : ) (v : NNReal) (x : ) (hv : v 0) :

      The gaussian pdf is positive when the variance is not zero.

      The gaussian pdf is nonnegative.

      The gaussian pdf is measurable.

      The gaussian distribution pdf integrates to 1 when the variance is not zero.

      The gaussian distribution pdf integrates to 1 when the variance is not zero.

      theorem ProbabilityTheory.gaussianPDFReal_sub {μ : } {v : NNReal} (x y : ) :
      gaussianPDFReal μ v (x - y) = gaussianPDFReal (μ + y) v x
      theorem ProbabilityTheory.gaussianPDFReal_add {μ : } {v : NNReal} (x y : ) :
      gaussianPDFReal μ v (x + y) = gaussianPDFReal (μ - y) v x
      theorem ProbabilityTheory.gaussianPDFReal_inv_mul {μ : } {v : NNReal} {c : } (hc : c 0) (x : ) :
      gaussianPDFReal μ v (c⁻¹ * x) = |c| * gaussianPDFReal (c * μ) (c ^ 2, * v) x
      theorem ProbabilityTheory.gaussianPDFReal_mul {μ : } {v : NNReal} {c : } (hc : c 0) (x : ) :
      gaussianPDFReal μ v (c * x) = |c⁻¹| * gaussianPDFReal (c⁻¹ * μ) ((c ^ 2)⁻¹, * v) x
      noncomputable def ProbabilityTheory.gaussianPDF (μ : ) (v : NNReal) (x : ) :

      The pdf of a Gaussian distribution on ℝ with mean μ and variance v.

      Equations
        Instances For
          @[simp]
          theorem ProbabilityTheory.gaussianPDF_pos (μ : ) {v : NNReal} (hv : v 0) (x : ) :
          0 < gaussianPDF μ v x
          @[simp]
          theorem ProbabilityTheory.lintegral_gaussianPDF_eq_one (μ : ) {v : NNReal} (h : v 0) :
          ∫⁻ (x : ), gaussianPDF μ v x = 1

          A Gaussian distribution on with mean μ and variance v.

          Equations
            Instances For
              theorem ProbabilityTheory.gaussianReal_apply (μ : ) {v : NNReal} (hv : v 0) (s : Set ) :
              (gaussianReal μ v) s = ∫⁻ (x : ) in s, gaussianPDF μ v x
              theorem ProbabilityTheory.integral_gaussianReal_eq_integral_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {μ : } {v : NNReal} {f : E} (hv : v 0) :
              (x : ), f x gaussianReal μ v = (x : ), gaussianPDFReal μ v x f x
              theorem MeasurableEmbedding.gaussianReal_comap_apply {μ : } {v : NNReal} (hv : v 0) {f : } (hf : MeasurableEmbedding f) {f' : } (h_deriv : ∀ (x : ), HasDerivAt f (f' x) x) {s : Set } (hs : MeasurableSet s) :
              theorem MeasurableEquiv.gaussianReal_map_symm_apply {μ : } {v : NNReal} (hv : v 0) (f : ≃ᵐ ) {f' : } (h_deriv : ∀ (x : ), HasDerivAt (⇑f) (f' x) x) {s : Set } (hs : MeasurableSet s) :

              The map of a Gaussian distribution by addition of a constant is a Gaussian.

              The map of a Gaussian distribution by addition of a constant is a Gaussian.

              theorem ProbabilityTheory.gaussianReal_map_const_mul {μ : } {v : NNReal} (c : ) :
              MeasureTheory.Measure.map (fun (x : ) => c * x) (gaussianReal μ v) = gaussianReal (c * μ) (c ^ 2, * v)

              The map of a Gaussian distribution by multiplication by a constant is a Gaussian.

              theorem ProbabilityTheory.gaussianReal_map_mul_const {μ : } {v : NNReal} (c : ) :
              MeasureTheory.Measure.map (fun (x : ) => x * c) (gaussianReal μ v) = gaussianReal (c * μ) (c ^ 2, * v)

              The map of a Gaussian distribution by multiplication by a constant is a Gaussian.

              If X is a real random variable with Gaussian law with mean μ and variance v, then X + y has Gaussian law with mean μ + y and variance v.

              If X is a real random variable with Gaussian law with mean μ and variance v, then y + X has Gaussian law with mean μ + y and variance v.

              If X is a real random variable with Gaussian law with mean μ and variance v, then c * X has Gaussian law with mean c * μ and variance c^2 * v.

              If X is a real random variable with Gaussian law with mean μ and variance v, then X * c has Gaussian law with mean c * μ and variance c^2 * v.

              theorem ProbabilityTheory.complexMGF_id_gaussianReal {μ : } {v : NNReal} (z : ) :
              complexMGF id (gaussianReal μ v) z = Complex.exp (z * μ + v * z ^ 2 / 2)

              The complex moment generating function of a Gaussian distribution with mean μ and variance v is given by z ↦ exp (z * μ + v * z ^ 2 / 2).

              theorem ProbabilityTheory.complexMGF_gaussianReal {Ω : Type u_1} { : MeasurableSpace Ω} {p : MeasureTheory.Measure Ω} {μ : } {v : NNReal} {X : Ω} (hX : MeasureTheory.Measure.map X p = gaussianReal μ v) (z : ) :
              complexMGF X p z = Complex.exp (z * μ + v * z ^ 2 / 2)

              The complex moment generating function of a random variable with Gaussian distribution with mean μ and variance v is given by z ↦ exp (z * μ + v * z ^ 2 / 2).

              theorem ProbabilityTheory.charFun_gaussianReal {μ : } {v : NNReal} (t : ) :
              MeasureTheory.charFun (gaussianReal μ v) t = Complex.exp (t * μ * Complex.I - v * t ^ 2 / 2)

              The characteristic function of a Gaussian distribution with mean μ and variance v is given by t ↦ exp (t * μ - v * t ^ 2 / 2).

              theorem ProbabilityTheory.mgf_gaussianReal {Ω : Type u_1} { : MeasurableSpace Ω} {p : MeasureTheory.Measure Ω} {μ : } {v : NNReal} {X : Ω} (hX : MeasureTheory.Measure.map X p = gaussianReal μ v) (t : ) :
              mgf X p t = Real.exp (μ * t + v * t ^ 2 / 2)

              The moment generating function of a random variable with Gaussian distribution with mean μ and variance v is given by t ↦ exp (μ * t + v * t ^ 2 / 2).

              theorem ProbabilityTheory.mgf_fun_id_gaussianReal {μ : } {v : NNReal} :
              mgf (fun (x : ) => x) (gaussianReal μ v) = fun (t : ) => Real.exp (μ * t + v * t ^ 2 / 2)
              theorem ProbabilityTheory.mgf_id_gaussianReal {μ : } {v : NNReal} :
              mgf id (gaussianReal μ v) = fun (t : ) => Real.exp (μ * t + v * t ^ 2 / 2)
              theorem ProbabilityTheory.cgf_gaussianReal {Ω : Type u_1} { : MeasurableSpace Ω} {p : MeasureTheory.Measure Ω} {μ : } {v : NNReal} {X : Ω} (hX : MeasureTheory.Measure.map X p = gaussianReal μ v) (t : ) :
              cgf X p t = μ * t + v * t ^ 2 / 2

              The cumulant generating function of a random variable with Gaussian distribution with mean μ and variance v is given by t ↦ μ * t + v * t ^ 2 / 2.

              @[simp]

              The mean of a real Gaussian distribution gaussianReal μ v is its mean parameter μ.

              @[simp]
              theorem ProbabilityTheory.variance_fun_id_gaussianReal {μ : } {v : NNReal} :
              variance (fun (x : ) => x) (gaussianReal μ v) = v

              The variance of a real Gaussian distribution gaussianReal μ v is its variance parameter v.

              @[simp]

              The variance of a real Gaussian distribution gaussianReal μ v is its variance parameter v.

              All the moments of a real Gaussian distribution are finite. That is, the identity is in Lp for all finite p.

              All the moments of a real Gaussian distribution are finite. That is, the identity is in Lp for all finite p.

              @[simp]
              theorem ProbabilityTheory.gaussianReal_conv_gaussianReal {m₁ m₂ : } {v₁ v₂ : NNReal} :
              (gaussianReal m₁ v₁).conv (gaussianReal m₂ v₂) = gaussianReal (m₁ + m₂) (v₁ + v₂)

              The convolution of two real Gaussian distributions with means m₁, m₂ and variances v₁, v₂ is a real Gaussian distribution with mean m₁ + m₂ and variance v₁ + v₂.

              theorem ProbabilityTheory.gaussianReal_add_gaussianReal_of_indepFun {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {m₁ m₂ : } {v₁ v₂ : NNReal} {X Y : Ω} (hXY : IndepFun X Y P) (hX : MeasureTheory.Measure.map X P = gaussianReal m₁ v₁) (hY : MeasureTheory.Measure.map Y P = gaussianReal m₂ v₂) :
              MeasureTheory.Measure.map (X + Y) P = gaussianReal (m₁ + m₂) (v₁ + v₂)