Documentation

Mathlib.RingTheory.DedekindDomain.SInteger

S-integers and S-units of fraction fields of Dedekind domains #

Let K be the field of fractions of a Dedekind domain R, and let S be a set of prime ideals in the height one spectrum of R. An S-integer of K is defined to have v-adic valuation at most one for all primes ideals v away from S, whereas an S-unit of is defined to have v-adic valuation exactly one for all prime ideals v away from S.

This file defines the subalgebra of S-integers of K and the subgroup of S-units of , where K can be specialised to the case of a number field or a function field separately.

Main definitions #

Main statements #

References #

Tags #

S integer, S-integer, S unit, S-unit

S-integers #

The R-subalgebra of S-integers of K.

Equations
    Instances For
      @[simp]
      @[simp]

      If S is the whole set of places of K, then the S-integers are the whole of K.

      @[simp]

      If S is the empty set, then the S-integers are the minimal R-subalgebra of K (which is just R itself, via Algebra.botEquivOfInjective and IsFractionRing.injective).

      S-units #

      The subgroup of S-units of .

      Equations
        Instances For
          @[simp]
          theorem Set.coe_unit {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
          (S.unit K) = {x : Kˣ | vS, (IsDedekindDomain.HeightOneSpectrum.valuation K v) x = 1}

          The group of S-units is the group of units of the ring of S-integers.

          Equations
            Instances For
              @[simp]
              theorem Set.val_unitEquivUnitsInteger_apply_coe {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] (x : (S.unit K)) :
              ((S.unitEquivUnitsInteger K) x) = x