Documentation

Mathlib.RingTheory.Ideal.Norm.AbsNorm

Ideal norms #

This file defines the absolute ideal norm Ideal.absNorm (I : Ideal R) : ℕ as the cardinality of the quotient R ⧸ I (setting it to 0 if the cardinality is infinite).

Main definitions #

Main results #

noncomputable def Submodule.cardQuot {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (S : Submodule R M) :

The cardinality of (M ⧸ S), if (M ⧸ S) is finite, and 0 otherwise. This is used to define the absolute ideal norm Ideal.absNorm.

Equations
    Instances For
      theorem Submodule.cardQuot_apply {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (S : Submodule R M) :
      @[simp]
      theorem Submodule.cardQuot_bot (R : Type u_1) (M : Type u_2) [Ring R] [AddCommGroup M] [Module R M] [Infinite M] :
      @[simp]
      theorem Submodule.cardQuot_top (R : Type u_1) (M : Type u_2) [Ring R] [AddCommGroup M] [Module R M] :
      @[simp]
      theorem Submodule.cardQuot_eq_one_iff {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {P : Submodule R M} :

      Multiplicity of the ideal norm, for coprime ideals. This is essentially just a repackaging of the Chinese Remainder Theorem.

      theorem Ideal.mul_add_mem_pow_succ_inj {S : Type u_1} [CommRing S] (P : Ideal S) {i : } (a d d' e e' : S) (a_mem : a P ^ i) (e_mem : e P ^ (i + 1)) (e'_mem : e' P ^ (i + 1)) (h : d - d' P) :
      a * d + e - (a * d' + e') P ^ (i + 1)

      If the d from Ideal.exists_mul_add_mem_pow_succ is unique, up to P, then so are the cs, up to P ^ (i + 1). Inspired by [Neukirch], proposition 6.1

      theorem Ideal.exists_mul_add_mem_pow_succ {S : Type u_1} [CommRing S] {P : Ideal S} [P_prime : P.IsPrime] [IsDedekindDomain S] (hP : P ) {i : } (a c : S) (a_mem : a P ^ i) (a_notMem : aP ^ (i + 1)) (c_mem : c P ^ i) :
      ∃ (d : S), eP ^ (i + 1), a * d + e = c

      If a ∈ P^i \ P^(i+1) and c ∈ P^i, then a * d + e = c for e ∈ P^(i+1). Ideal.mul_add_mem_pow_succ_unique shows the choice of d is unique, up to P. Inspired by [Neukirch], proposition 6.1

      theorem Ideal.mem_prime_of_mul_mem_pow {S : Type u_1} [CommRing S] [IsDedekindDomain S] {P : Ideal S} [P_prime : P.IsPrime] (hP : P ) {i : } {a b : S} (a_notMem : aP ^ (i + 1)) (ab_mem : a * b P ^ (i + 1)) :
      b P
      theorem Ideal.mul_add_mem_pow_succ_unique {S : Type u_1} [CommRing S] {P : Ideal S} [P_prime : P.IsPrime] [IsDedekindDomain S] (hP : P ) {i : } (a d d' e e' : S) (a_notMem : aP ^ (i + 1)) (e_mem : e P ^ (i + 1)) (e'_mem : e' P ^ (i + 1)) (h : a * d + e - (a * d' + e') P ^ (i + 1)) :
      d - d' P

      The choice of d in Ideal.exists_mul_add_mem_pow_succ is unique, up to P. Inspired by [Neukirch], proposition 6.1

      theorem cardQuot_pow_of_prime {S : Type u_1} [CommRing S] {P : Ideal S} [P_prime : P.IsPrime] [IsDedekindDomain S] (hP : P ) {i : } :

      Multiplicity of the ideal norm, for powers of prime ideals.

      Multiplicativity of the ideal norm in number rings.

      noncomputable def Ideal.absNorm {S : Type u_1} [CommRing S] [Nontrivial S] [IsDedekindDomain S] [Module.Free S] :

      The absolute norm of the ideal I : Ideal R is the cardinality of the quotient R ⧸ I.

      Equations
        Instances For
          @[simp]
          theorem Ideal.absNorm_mem {S : Type u_1} [CommRing S] [Nontrivial S] [IsDedekindDomain S] [Module.Free S] (I : Ideal S) :
          (absNorm I) I
          theorem Ideal.natAbs_det_equiv {S : Type u_1} [CommRing S] [Nontrivial S] [IsDedekindDomain S] [Module.Free S] [Module.Finite S] (I : Ideal S) {E : Type u_2} [EquivLike E S I] [AddEquivClass E S I] (e : E) :

          Let e : S ≃ I be an additive isomorphism (therefore a -linear equiv). Then an alternative way to compute the norm of I is given by taking the determinant of e. See natAbs_det_basis_change for a more familiar formulation of this result.

          theorem Ideal.natAbs_det_basis_change {S : Type u_1} [CommRing S] [Nontrivial S] [IsDedekindDomain S] [Module.Free S] [Module.Finite S] {ι : Type u_2} [Fintype ι] [DecidableEq ι] (b : Module.Basis ι S) (I : Ideal S) (bI : Module.Basis ι I) :

          Let b be a basis for S over and bI a basis for I over of the same dimension. Then an alternative way to compute the norm of I is given by taking the determinant of bI over b.

          theorem Ideal.norm_dvd_iff {S : Type u_1} [CommRing S] [Nontrivial S] [IsDedekindDomain S] [Module.Free S] [Module.Finite S] {x : S} (hx : Prime ((Algebra.norm ) x)) {y : } :
          (Algebra.norm ) x y x y