Preliminaries for Nöbeling's theorem #
This file constructs basic objects and results concerning them that are needed in the proof of
Nöbeling's theorem, which is in Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
.
See the section docstrings for more information.
Proof idea #
We follow the proof of theorem 5.4 in [scholze2019condensed], in which the idea is to embed S
in
a product of I
copies of Bool
for some sufficiently large I
, and then to choose a
well-ordering on I
and use ordinal induction over that well-order. Here we can let I
be
the set of clopen subsets of S
since S
is totally separated.
The above means it suffices to prove the following statement: For a closed subset C
of I → Bool
,
the ℤ
-module LocallyConstant C ℤ
is free.
For i : I
, let e C i : LocallyConstant C ℤ
denote the map fun f ↦ (if f.val i then 1 else 0)
.
The basis will consist of products e C iᵣ * ⋯ * e C i₁
with iᵣ > ⋯ > i₁
which cannot be written
as linear combinations of lexicographically smaller products. We call this set GoodProducts C
.
What is proved by ordinal induction (in
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
and
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
) is that this set is linearly
independent. The fact that it spans is proved directly in
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
.
References #
- [scholze2019condensed], Theorem 5.4.
Projection maps #
The purpose of this section is twofold.
Firstly, in the proof that the set GoodProducts C
spans the whole module LocallyConstant C ℤ
,
we need to project C
down to finite discrete subsets and write C
as a cofiltered limit of those.
Secondly, in the inductive argument, we need to project C
down to "smaller" sets satisfying the
inductive hypothesis.
In this section we define the relevant projection maps and prove some compatibility results.
Main definitions #
Let
J : I → Prop
. ThenProj J : (I → Bool) → (I → Bool)
is the projection mapping everything that satisfiesJ i
to itself, and everything else tofalse
.The image of
C
underProj J
is denotedπ C J
and the corresponding mapC → π C J
is calledProjRestrict
. IfJ
impliesK
we have a mapProjRestricts : π C K → π C J
.spanCone_isLimit
establishes that whenC
is compact, it can be written as a limit of its images under the mapsProj (· ∈ s)
wheres : Finset I
.
The objectwise map in the isomorphism spanFunctor ≅ Profinite.indexFunctor
.
Equations
Instances For
For a given compact subset C
of I → Bool
, spanFunctor
is the functor from the poset of finsets
of I
to Profinite
, sending a finite subset set J
to the image of C
under the projection
Proj J
.
Equations
Instances For
The limit cone on spanFunctor
with point C
.
Equations
Instances For
Defining the basis #
Our proposed basis consists of products e C iᵣ * ⋯ * e C i₁
with iᵣ > ⋯ > i₁
which cannot be
written as linear combinations of lexicographically smaller products. See below for the definition
of e
.
Main definitions #
For
i : I
, we lete C i : LocallyConstant C ℤ
denote the mapfun f ↦ (if f.val i then 1 else 0)
.Products I
is the type of lists of decreasing elements ofI
, so a typical element is[i₁, i₂,..., iᵣ]
withi₁ > i₂ > ... > iᵣ
.Products.eval C
is theC
-evaluation of a list. It takes a term[i₁, i₂,..., iᵣ] : Products I
and returns the actual producte C i₁ ··· e C iᵣ : LocallyConstant C ℤ
.GoodProducts C
is the set ofProducts I
such that theirC
-evaluation cannot be written as a linear combination of evaluations of lexicographically smaller lists.
Main results #
Products.evalFacProp
andProducts.evalFacProps
establish the fact thatProducts.eval
interacts nicely with the projection maps from the previous section.GoodProducts.span_iff_products
: the good products spanLocallyConstant C ℤ
iff all the products spanLocallyConstant C ℤ
.
Products I
is the type of lists of decreasing elements of I
, so a typical element is
[i₁, i₂, ...]
with i₁ > i₂ > ...
. We order Products I
lexicographically, so [] < [i₁, ...]
,
and [i₁, i₂, ...] < [j₁, j₂, ...]
if either i₁ < j₁
, or i₁ = j₁
and [i₂, ...] < [j₂, ...]
.
Terms m = [i₁, i₂, ..., iᵣ]
of this type will be used to represent products of the form
e C i₁ ··· e C iᵣ : LocallyConstant C ℤ
. The function associated to m
is m.eval
.
Equations
Instances For
Equations
The evaluation e C i₁ ··· e C iᵣ : C → ℤ
of a formal product [i₁, i₂, ..., iᵣ]
.
Equations
Instances For
The predicate on products which we prove picks out a basis of LocallyConstant C ℤ
. We call such a
product "good".
Equations
Instances For
The set of good products.
Equations
Instances For
Evaluation of good products.
Equations
Instances For
The image of the good products in the module LocallyConstant C ℤ
.
Equations
Instances For
The type of good products is equivalent to its image.
Equations
Instances For
The good products span LocallyConstant C ℤ
if and only all the products do.
Relating elements of the well-order I
with ordinals #
We choose a well-ordering on I
. This amounts to regarding I
as an ordinal, and as such it
can be regarded as the set of all strictly smaller ordinals, allowing to apply ordinal induction.
Main definitions #
ord I i
is the termi
ofI
regarded as an ordinal.term I ho
is a sufficiently small ordinal regarded as a term ofI
.contained C o
is a predicate saying thatC
is "small" enough in relation to the ordinalo
to satisfy the inductive hypothesis.P I
is the predicate on ordinals about linear independence of good products, which the rest of this file is spent on proving by induction.
A term of I
regarded as an ordinal.
Equations
Instances For
An ordinal regarded as a term of I
.
Equations
Instances For
A predicate saying that C
is "small" enough to satisfy the inductive hypothesis.
Equations
Instances For
The predicate on ordinals which we prove by induction, see GoodProducts.P0
,
GoodProducts.Plimit
and GoodProducts.linearIndependentAux
in the section Induction
below
Equations
Instances For
ℤ
-linear maps induced by projections #
We define injective ℤ
-linear maps between modules of the form LocallyConstant C ℤ
induced by
precomposition with the projections defined in the section Projections
.
Main definitions #
πs
andπs'
are theℤ
-linear maps corresponding toProjRestrict
andProjRestricts
respectively.
Main result #
- We prove that
πs
andπs'
interact well withProducts.eval
and the main application is the theoremisGood_mono
which says that the propertyisGood
is "monotone" on ordinals.
The ℤ
-linear map induced by precomposition of the projection C → π C (ord I · < o)
.
Equations
Instances For
The ℤ
-linear map induced by precomposition of the projection
π C (ord I · < o₂) → π C (ord I · < o₁)
for o₁ ≤ o₂
.
Equations
Instances For
If l
is good w.r.t. π C (ord I · < o₁)
and o₁ ≤ o₂
, then it is good w.r.t.
π C (ord I · < o₂)