Documentation

Mathlib.Topology.Category.TopCat.Limits.Pullbacks

Pullbacks and pushouts in the category of topological spaces #

@[reducible, inline]
abbrev TopCat.pullbackFst {X Y Z : TopCat} (f : X Z) (g : Y Z) :

The first projection from the pullback.

Equations
    Instances For
      @[reducible, inline]
      abbrev TopCat.pullbackSnd {X Y Z : TopCat} (f : X Z) (g : Y Z) :

      The second projection from the pullback.

      Equations
        Instances For

          The explicit pullback cone of X, Y given by { p : X × Y // f p.1 = g p.2 }.

          Equations
            Instances For

              The constructed cone is a limit.

              Equations
                Instances For

                  The pullback of two maps can be identified as a subspace of X × Y.

                  Equations
                    Instances For
                      noncomputable def TopCat.pullbackHomeoPreimage {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (f : XZ) (hf : Continuous f) (g : YZ) (hg : Topology.IsEmbedding g) :
                      { p : X × Y // f p.1 = g p.2 } ≃ₜ ↑(f ⁻¹' Set.range g)

                      The pullback along an embedding is (isomorphic to) the preimage.

                      Equations
                        Instances For

                          If the map S ⟶ T is mono, then there is a description of the image of W ×ₛ X ⟶ Y ×ₜ Z.

                          theorem TopCat.pullback_map_isEmbedding {W X Y Z S T : TopCat} (f₁ : W S) (f₂ : X S) (g₁ : Y T) (g₂ : Z T) {i₁ : W Y} {i₂ : X Z} (H₁ : Topology.IsEmbedding (CategoryTheory.ConcreteCategory.hom i₁)) (H₂ : Topology.IsEmbedding (CategoryTheory.ConcreteCategory.hom i₂)) (i₃ : S T) (eq₁ : CategoryTheory.CategoryStruct.comp f₁ i₃ = CategoryTheory.CategoryStruct.comp i₁ g₁) (eq₂ : CategoryTheory.CategoryStruct.comp f₂ i₃ = CategoryTheory.CategoryStruct.comp i₂ g₂) :

                          If there is a diagram where the morphisms W ⟶ Y and X ⟶ Z are embeddings, then the induced morphism W ×ₛ X ⟶ Y ×ₜ Z is also an embedding.

                          W ⟶ Y
                           ↘   ↘
                            S ⟶ T
                           ↗   ↗
                          X ⟶ Z
                          
                          theorem TopCat.pullback_map_isOpenEmbedding {W X Y Z S T : TopCat} (f₁ : W S) (f₂ : X S) (g₁ : Y T) (g₂ : Z T) {i₁ : W Y} {i₂ : X Z} (H₁ : Topology.IsOpenEmbedding (CategoryTheory.ConcreteCategory.hom i₁)) (H₂ : Topology.IsOpenEmbedding (CategoryTheory.ConcreteCategory.hom i₂)) (i₃ : S T) [H₃ : CategoryTheory.Mono i₃] (eq₁ : CategoryTheory.CategoryStruct.comp f₁ i₃ = CategoryTheory.CategoryStruct.comp i₁ g₁) (eq₂ : CategoryTheory.CategoryStruct.comp f₂ i₃ = CategoryTheory.CategoryStruct.comp i₂ g₂) :

                          If there is a diagram where the morphisms W ⟶ Y and X ⟶ Z are open embeddings, and S ⟶ T is mono, then the induced morphism W ×ₛ X ⟶ Y ×ₜ Z is also an open embedding.

                          W ⟶ Y
                           ↘   ↘
                            S ⟶ T
                           ↗   ↗
                          X ⟶ Z