Documentation

Mathlib.Topology.Order.Category.AlexDisc

Category of Alexandrov-discrete topological spaces #

This defines AlexDisc, the category of Alexandrov-discrete topological spaces with continuous maps, and proves it's equivalent to the category of preorders.

structure AlexDiscextends TopCat :
Type (u_1 + 1)

The category of Alexandrov-discrete spaces.

Instances For
    @[reducible, inline]

    Construct a bundled AlexDisc from the underlying topological space.

    Equations
      Instances For
        theorem AlexDisc.coe_of (α : Type u_1) [TopologicalSpace α] [AlexandrovDiscrete α] :
        (of α).toTopCat = α
        def AlexDisc.Iso.mk {α β : AlexDisc} (e : α.toTopCat ≃ₜ β.toTopCat) :
        α β

        Constructs an equivalence between preorders from an order isomorphism between them.

        Equations
          Instances For
            @[simp]
            theorem AlexDisc.Iso.mk_hom {α β : AlexDisc} (e : α.toTopCat ≃ₜ β.toTopCat) :
            (mk e).hom = TopCat.ofHom e
            @[simp]
            theorem AlexDisc.Iso.mk_inv {α β : AlexDisc} (e : α.toTopCat ≃ₜ β.toTopCat) :

            Sends a topological space to its specialisation order.

            Equations
              Instances For