Documentation

Mathlib.Algebra.Algebra.Subalgebra.MulOpposite

Subalgebras of opposite rings #

For every ring A over a commutative ring R, we construct an equivalence between subalgebras of A / R and that of Aᵐᵒᵖ / R.

def Subalgebra.op {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :

Pull a subalgebra back to an opposite subalgebra along MulOpposite.unop

Equations
    Instances For
      @[simp]
      theorem Subalgebra.coe_op {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
      @[simp]
      theorem Subalgebra.op_toSubsemiring {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
      @[simp]
      theorem Subalgebra.mem_op {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] {x : Aᵐᵒᵖ} {S : Subalgebra R A} :
      def Subalgebra.unop {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R Aᵐᵒᵖ) :

      Pull a subalgebra back to a subalgebra along MulOpposite.op

      Equations
        Instances For
          @[simp]
          theorem Subalgebra.coe_unop {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R Aᵐᵒᵖ) :
          @[simp]
          @[simp]
          theorem Subalgebra.mem_unop {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] {x : A} {S : Subalgebra R Aᵐᵒᵖ} :
          @[simp]
          theorem Subalgebra.unop_op {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
          S.op.unop = S
          @[simp]
          theorem Subalgebra.op_unop {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R Aᵐᵒᵖ) :
          S.unop.op = S

          Lattice results #

          theorem Subalgebra.op_le_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] {S₁ : Subalgebra R A} {S₂ : Subalgebra R Aᵐᵒᵖ} :
          S₁.op S₂ S₁ S₂.unop
          theorem Subalgebra.le_op_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] {S₁ : Subalgebra R Aᵐᵒᵖ} {S₂ : Subalgebra R A} :
          S₁ S₂.op S₁.unop S₂
          @[simp]
          theorem Subalgebra.op_le_op_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] {S₁ S₂ : Subalgebra R A} :
          S₁.op S₂.op S₁ S₂
          @[simp]
          theorem Subalgebra.unop_le_unop_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] {S₁ S₂ : Subalgebra R Aᵐᵒᵖ} :
          S₁.unop S₂.unop S₁ S₂

          A subalgebra S of A / R determines a subalgebra S.op of the opposite ring Aᵐᵒᵖ / R.

          Equations
            Instances For
              @[simp]
              theorem Subalgebra.opEquiv_apply {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              @[simp]
              @[simp]
              theorem Subalgebra.op_bot {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] :
              @[simp]
              theorem Subalgebra.unop_bot {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] :
              @[simp]
              theorem Subalgebra.op_top {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] :
              @[simp]
              theorem Subalgebra.unop_top {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] :
              theorem Subalgebra.op_sup {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S₁ S₂ : Subalgebra R A) :
              (S₁S₂).op = S₁.opS₂.op
              theorem Subalgebra.unop_sup {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S₁ S₂ : Subalgebra R Aᵐᵒᵖ) :
              (S₁S₂).unop = S₁.unopS₂.unop
              theorem Subalgebra.op_inf {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S₁ S₂ : Subalgebra R A) :
              (S₁S₂).op = S₁.opS₂.op
              theorem Subalgebra.unop_inf {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S₁ S₂ : Subalgebra R Aᵐᵒᵖ) :
              (S₁S₂).unop = S₁.unopS₂.unop
              theorem Subalgebra.op_sSup {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Set (Subalgebra R A)) :
              theorem Subalgebra.op_sInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Set (Subalgebra R A)) :
              theorem Subalgebra.op_iSup {ι : Sort u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : ιSubalgebra R A) :
              (iSup S).op = ⨆ (i : ι), (S i).op
              theorem Subalgebra.unop_iSup {ι : Sort u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : ιSubalgebra R Aᵐᵒᵖ) :
              (iSup S).unop = ⨆ (i : ι), (S i).unop
              theorem Subalgebra.op_iInf {ι : Sort u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : ιSubalgebra R A) :
              (iInf S).op = ⨅ (i : ι), (S i).op
              theorem Subalgebra.unop_iInf {ι : Sort u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : ιSubalgebra R Aᵐᵒᵖ) :
              (iInf S).unop = ⨅ (i : ι), (S i).unop
              def Subalgebra.linearEquivOp {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              S ≃ₗ[R] S.op

              Bijection between a subalgebra S and its opposite.

              Equations
                Instances For
                  @[simp]
                  theorem Subalgebra.linearEquivOp_symm_apply_coe {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (a✝ : S.op) :
                  (S.linearEquivOp.symm a✝) = MulOpposite.unop a✝
                  @[simp]
                  theorem Subalgebra.linearEquivOp_apply_coe {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (a✝ : S.toSubsemiring) :
                  (S.linearEquivOp a✝) = MulOpposite.op a✝
                  def Subalgebra.algEquivOpMop {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                  S ≃ₐ[R] (↥S.op)ᵐᵒᵖ

                  Bijection between a subalgebra S and MulOpposite of its opposite.

                  Equations
                    Instances For
                      @[simp]
                      theorem Subalgebra.algEquivOpMop_apply {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (a✝ : S.toSubsemiring) :
                      @[simp]
                      theorem Subalgebra.algEquivOpMop_symm_apply_coe {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (a✝ : (↥S.op)ᵐᵒᵖ) :
                      def Subalgebra.mopAlgEquivOp {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                      (↥S)ᵐᵒᵖ ≃ₐ[R] S.op

                      Bijection between MulOpposite of a subalgebra S and its opposite.

                      Equations
                        Instances For
                          @[simp]
                          theorem Subalgebra.mopAlgEquivOp_symm_apply {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (a✝ : S.op) :
                          @[simp]
                          theorem Subalgebra.mopAlgEquivOp_apply_coe {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (a✝ : (↥S.toSubsemiring)ᵐᵒᵖ) :
                          @[simp]
                          theorem Subalgebra.op_toSubring {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) :
                          @[simp]
                          theorem Subalgebra.unop_toSubring {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R Aᵐᵒᵖ) :