Documentation

Mathlib.Algebra.Category.BoolRing

The category of Boolean rings #

This file defines BoolRing, the category of Boolean rings.

TODO #

Finish the equivalence with BoolAlg.

structure BoolRing :
Type (u + 1)

The category of Boolean rings.

Instances For
    @[reducible, inline]
    abbrev BoolRing.of (α : Type u_1) [BooleanRing α] :

    Construct a bundled BoolRing from a BooleanRing.

    Equations
      Instances For
        theorem BoolRing.coe_of (α : Type u_1) [BooleanRing α] :
        (of α) = α
        structure BoolRing.Hom (R : BoolRing) (S : BoolRing) :
        Type (max u_1 u_2)

        The type of morphisms in BoolRing.

        • hom' : R →+* S

          The underlying ring hom.

        Instances For
          theorem BoolRing.Hom.ext {R : BoolRing} {S : BoolRing} {x y : R.Hom S} (hom' : x.hom' = y.hom') :
          x = y
          theorem BoolRing.Hom.ext_iff {R : BoolRing} {S : BoolRing} {x y : R.Hom S} :
          x = y x.hom' = y.hom'
          @[reducible, inline]
          abbrev BoolRing.Hom.hom {X Y : BoolRing} (f : X.Hom Y) :
          X →+* Y

          Turn a morphism in BoolRing back into a RingHom.

          Equations
            Instances For
              @[reducible, inline]
              abbrev BoolRing.ofHom {R S : Type u} [BooleanRing R] [BooleanRing S] (f : R →+* S) :
              of R of S

              Typecheck a RingHom as a morphism in BoolRing.

              Equations
                Instances For
                  theorem BoolRing.hom_ext {R S : BoolRing} {f g : R S} (hf : Hom.hom f = Hom.hom g) :
                  f = g
                  theorem BoolRing.hom_ext_iff {R S : BoolRing} {f g : R S} :
                  def BoolRing.Iso.mk {α β : BoolRing} (e : α ≃+* β) :
                  α β

                  Constructs an isomorphism of Boolean rings from a ring isomorphism between them.

                  Equations
                    Instances For
                      @[simp]
                      theorem BoolRing.Iso.mk_inv_hom' {α β : BoolRing} (e : α ≃+* β) :
                      (mk e).inv.hom' = e.symm
                      @[simp]
                      theorem BoolRing.Iso.mk_hom_hom' {α β : BoolRing} (e : α ≃+* β) :
                      (mk e).hom.hom' = e

                      Equivalence between BoolAlg and BoolRing #

                      The equivalence between Boolean rings and Boolean algebras. This is actually an isomorphism.

                      Equations
                        Instances For