Documentation

Mathlib.Order.Category.BoolAlg

The category of boolean algebras #

This defines BoolAlg, the category of boolean algebras.

structure BoolAlg :
Type (u_1 + 1)

The category of boolean algebras.

Instances For
    @[reducible, inline]
    abbrev BoolAlg.of (X : Type u_1) [BooleanAlgebra X] :

    Construct a bundled BoolAlg from the underlying type and typeclass.

    Equations
      Instances For
        structure BoolAlg.Hom (X Y : BoolAlg) :

        The type of morphisms in BoolAlg R.

        Instances For
          theorem BoolAlg.Hom.ext_iff {X Y : BoolAlg} {x y : X.Hom Y} :
          x = y x.hom' = y.hom'
          theorem BoolAlg.Hom.ext {X Y : BoolAlg} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          @[reducible, inline]
          abbrev BoolAlg.Hom.hom {X Y : BoolAlg} (f : X.Hom Y) :

          Turn a morphism in BoolAlg back into a BoundedLatticeHom.

          Equations
            Instances For
              @[reducible, inline]
              abbrev BoolAlg.ofHom {X Y : Type u} [BooleanAlgebra X] [BooleanAlgebra Y] (f : BoundedLatticeHom X Y) :
              of X of Y

              Typecheck a BoundedLatticeHom as a morphism in BoolAlg.

              Equations
                Instances For
                  def BoolAlg.Hom.Simps.hom (X Y : BoolAlg) (f : X.Hom Y) :

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      theorem BoolAlg.ext {X Y : BoolAlg} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                      f = g
                      theorem BoolAlg.coe_of (X : Type u) [BooleanAlgebra X] :
                      (of X) = X
                      @[simp]
                      theorem BoolAlg.hom_comp {X Y Z : BoolAlg} (f : X Y) (g : Y Z) :
                      theorem BoolAlg.hom_ext {X Y : BoolAlg} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem BoolAlg.hom_ext_iff {X Y : BoolAlg} {f g : X Y} :
                      @[simp]
                      @[simp]
                      theorem BoolAlg.ofHom_hom {X Y : BoolAlg} (f : X Y) :

                      Turn a BoolAlg into a BddDistLat by forgetting its complement operation.

                      Equations
                        Instances For
                          @[simp]
                          theorem BoolAlg.hasForgetToHeytAlg_forget₂_map {X Y : BoolAlg} (f : X Y) :
                          CategoryTheory.HasForget₂.forget₂.map f = HeytAlg.ofHom { toFun := (Hom.hom f), map_sup' := , map_inf' := , map_bot' := , map_himp' := }
                          def BoolAlg.Iso.mk {α β : BoolAlg} (e : α ≃o β) :
                          α β

                          Constructs an equivalence between Boolean algebras from an order isomorphism between them.

                          Equations
                            Instances For
                              @[simp]
                              theorem BoolAlg.Iso.mk_hom {α β : BoolAlg} (e : α ≃o β) :
                              (mk e).hom = ofHom (have __src := { toFun := e, map_sup' := , map_inf' := }; { toFun := e, map_sup' := , map_inf' := , map_top' := , map_bot' := })
                              @[simp]
                              theorem BoolAlg.Iso.mk_inv {α β : BoolAlg} (e : α ≃o β) :
                              (mk e).inv = ofHom (have __src := { toFun := e.symm, map_sup' := , map_inf' := }; { toFun := e.symm, map_sup' := , map_inf' := , map_top' := , map_bot' := })

                              OrderDual as a functor.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem BoolAlg.dual_map {X✝ Y✝ : BoolAlg} (f : X✝ Y✝) :

                                  The equivalence between BoolAlg and itself induced by OrderDual both ways.

                                  Equations
                                    Instances For

                                      The powerset functor. Set as a contravariant functor.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem typeToBoolAlgOp_map {X Y : Type u} (f : X Y) :
                                          typeToBoolAlgOp.map f = (BoolAlg.ofHom (have __src := { toFun := (CompleteLatticeHom.setPreimage f), map_sup' := , map_inf' := }; { toFun := (CompleteLatticeHom.setPreimage f), map_sup' := , map_inf' := , map_top' := , map_bot' := })).op