Documentation

Mathlib.Algebra.Category.Ring.Under.Limits

Limits in Under R for a commutative ring R #

We show that Under.pushout f is left-exact, i.e. preserves finite limits, if f : R ⟶ S is flat.

The canonical fan on P : ι → Under R given by ∀ i, P i.

Equations
    Instances For

      The canonical fan is limiting.

      Equations
        Instances For
          def CommRingCat.Under.tensorProductFan {R : CommRingCat} (S : CommRingCat) [Algebra R S] {ι : Type u} (P : ιCategoryTheory.Under R) :
          CategoryTheory.Limits.Fan fun (i : ι) => S.mkUnder (TensorProduct R S (P i).right)

          The fan on i ↦ S ⊗[R] P i given by S ⊗[R] ∀ i, P i

          Equations
            Instances For
              def CommRingCat.Under.tensorProductFan' {R : CommRingCat} (S : CommRingCat) [Algebra R S] {ι : Type u} (P : ιCategoryTheory.Under R) :
              CategoryTheory.Limits.Fan fun (i : ι) => S.mkUnder (TensorProduct R S (P i).right)

              The fan on i ↦ S ⊗[R] P i given by ∀ i, S ⊗[R] P i

              Equations
                Instances For

                  The two fans on i ↦ S ⊗[R] P i agree if ι is finite.

                  Equations
                    Instances For

                      The fan on i ↦ S ⊗[R] P i given by S ⊗[R] ∀ i, P i is limiting if ι is finite.

                      Equations
                        Instances For

                          tensorProd R S preserves the limit of the canonical fan on P.

                          Equations
                            Instances For

                              The canonical fork on f g : A ⟶ B given by the equalizer.

                              Equations
                                Instances For

                                  Variant of Under.equalizerFork' for algebra maps. This is definitionally equal to Under.equalizerFork but this is costly in applications.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem CommRingCat.Under.equalizerFork'_ι {R : CommRingCat} {A B : Type u} [CommRing A] [CommRing B] [Algebra (↑R) A] [Algebra (↑R) B] (f g : A →ₐ[R] B) :

                                      The canonical fork on f g : A ⟶ B is limiting.

                                      Equations
                                        Instances For

                                          Variant of Under.equalizerForkIsLimit for algebra maps.

                                          Equations
                                            Instances For

                                              The fork on 𝟙 ⊗[R] f and 𝟙 ⊗[R] g given by S ⊗[R] eq(f, g).

                                              Equations
                                                Instances For

                                                  If S is R-flat, S ⊗[R] eq(f, g) is isomorphic to eq(𝟙 ⊗[R] f, 𝟙 ⊗[R] g).

                                                  Equations
                                                    Instances For

                                                      If S is R-flat, tensorProd R S preserves the equalizer of f and g.

                                                      Equations
                                                        Instances For

                                                          Under.pushout f preserves finite limits if f is flat.