Documentation

Mathlib.Algebra.Homology.Embedding.StupidTrunc

The stupid truncation of homological complexes #

Given an embedding e : c.Embedding c' of complex shapes, we define a functor stupidTruncFunctor : HomologicalComplex C c' ⥤ HomologicalComplex C c' which sends K to K.stupidTrunc e which is defined as (K.restriction e).extend e.

TODO (@joelriou) #

The stupid truncation of a complex K : HomologicalComplex C c' relatively to an embedding e : c.Embedding c' of complex shapes.

Equations
    Instances For
      noncomputable def HomologicalComplex.stupidTruncXIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsRelIff] {i : ι} {i' : ι'} (hi' : e.f i = i') :
      (K.stupidTrunc e).X i' K.X i'

      The isomorphism (K.stupidTrunc e).X i' ≅ K.X i' when i is in the image of e.f.

      Equations
        Instances For

          The morphism K.stupidTrunc e ⟶ L.stupidTrunc e induced by a morphism K ⟶ L.

          Equations
            Instances For

              The stupid truncation functor HomologicalComplex C c' ⥤ HomologicalComplex C c' given by an embedding e : Embedding c c' of complex shapes.

              Equations
                Instances For