Documentation

Mathlib.Algebra.Homology.Embedding.TruncLE

The canonical truncation #

Given an embedding e : Embedding c c' of complex shapes which satisfies e.IsTruncLE and K : HomologicalComplex C c', we define K.truncGE' e : HomologicalComplex C c and K.truncLE e : HomologicalComplex C c' which are the canonical truncations of K relative to e.

In order to achieve this, we dualize the constructions from the file Embedding.TruncGE.

noncomputable def HomologicalComplex.truncLE' {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] :

The canonical truncation of a homological complex relative to an embedding of complex shapes e which satisfies e.IsTruncLE.

Equations
    Instances For
      noncomputable def HomologicalComplex.truncLE'XIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : ¬e.BoundaryLE i) :
      (K.truncLE' e).X i K.X i'

      The isomorphism (K.truncLE' e).X i ≅ K.X i' when e.f i = i' and e.BoundaryLE i does not hold.

      Equations
        Instances For
          noncomputable def HomologicalComplex.truncLE'XIsoCycles {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : e.BoundaryLE i) :
          (K.truncLE' e).X i K.cycles i'

          The isomorphism (K.truncLE' e).X i ≅ K.cycles i' when e.f i = i' and e.BoundaryLE i holds.

          Equations
            Instances For
              theorem HomologicalComplex.truncLE'_d_eq {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i j : ι} (hij : c.Rel i j) {i' j' : ι'} (hi' : e.f i = i') (hj' : e.f j = j') (hj : ¬e.BoundaryLE j) :
              theorem HomologicalComplex.truncLE'_d_eq_toCycles {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i j : ι} (hij : c.Rel i j) {i' j' : ι'} (hi' : e.f i = i') (hj' : e.f j = j') (hj : e.BoundaryLE j) :

              The canonical truncation of a homological complex relative to an embedding of complex shapes e which satisfies e.IsTruncLE.

              Equations
                Instances For

                  The canonical isomorphism K.truncLE e ≅ (K.truncLE' e).extend e.

                  Equations
                    Instances For
                      noncomputable def HomologicalComplex.truncLEXIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : ¬e.BoundaryLE i) :
                      (K.truncLE e).X i' K.X i'

                      The isomorphism (K.truncLE e).X i' ≅ K.X i' when e.f i = i' and e.BoundaryLE i does not hold.

                      Equations
                        Instances For
                          noncomputable def HomologicalComplex.truncLEXIsoCycles {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : e.BoundaryLE i) :
                          (K.truncLE e).X i' K.cycles i'

                          The isomorphism (K.truncLE e).X i' ≅ K.cycles i' when e.f i = i' and e.BoundaryLE i holds.

                          Equations
                            Instances For
                              noncomputable def HomologicalComplex.truncLE'Map {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] :

                              The morphism K.truncLE' e ⟶ L.truncLE' e induced by a morphism K ⟶ L.

                              Equations
                                Instances For
                                  theorem HomologicalComplex.truncLE'Map_f_eq_cyclesMap {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] {i : ι} (hi : e.BoundaryLE i) {i' : ι'} (h : e.f i = i') :
                                  theorem HomologicalComplex.truncLE'Map_f_eq {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] {i : ι} (hi : ¬e.BoundaryLE i) {i' : ι'} (h : e.f i = i') :
                                  @[simp]
                                  theorem HomologicalComplex.truncLE'Map_comp {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L M : HomologicalComplex C c'} (φ : K L) (φ' : L M) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [∀ (i' : ι'), M.HasHomology i'] :
                                  noncomputable def HomologicalComplex.truncLEMap {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :

                                  The morphism K.truncLE e ⟶ L.truncLE e induced by a morphism K ⟶ L.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem HomologicalComplex.truncLEMap_comp {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L M : HomologicalComplex C c'} (φ : K L) (φ' : L M) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [∀ (i' : ι'), M.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                                      noncomputable def HomologicalComplex.truncLE'ToRestriction {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] :

                                      The canonical morphism K.truncLE' e ⟶ K.restriction e.

                                      Equations
                                        Instances For

                                          (K.truncLE'ToRestriction e).f i is an isomorphism when ¬ e.BoundaryLE i.

                                          noncomputable def HomologicalComplex.ιTruncLE {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                                          K.truncLE e K

                                          The canonical morphism K.truncLE e ⟶ K when e is an embedding of complex shapes which satisfy e.IsTruncLE.

                                          Equations
                                            Instances For

                                              Given an embedding e : Embedding c c' of complex shapes which satisfy e.IsTruncLE, this is the (canonical) truncation functor HomologicalComplex C c' ⥤ HomologicalComplex C c.

                                              Equations
                                                Instances For

                                                  The natural transformation K.truncGE' e ⟶ K.restriction e for all K.

                                                  Equations
                                                    Instances For

                                                      Given an embedding e : Embedding c c' of complex shapes which satisfy e.IsTruncLE, this is the (canonical) truncation functor HomologicalComplex C c' ⥤ HomologicalComplex C c'.

                                                      Equations
                                                        Instances For