Documentation

Mathlib.AlgebraicGeometry.Limits

(Co)Limits of Schemes #

We construct various limits and colimits in the category of schemes.

TODO #

Spec ℤ is the terminal object in the category of schemes.

Equations
    Instances For

      Spec ℤ is the terminal object in the category of schemes.

      Equations
        Instances For
          Equations
            noncomputable def AlgebraicGeometry.Scheme.emptyTo (X : Scheme) :

            The map from the empty scheme.

            Equations
              Instances For
                @[simp]
                theorem AlgebraicGeometry.Scheme.emptyTo_base (X : Scheme) :
                X.emptyTo.base = TopCat.ofHom { toFun := fun (x : PEmpty.{u + 1}) => x.elim, continuous_toFun := }

                The empty scheme is the initial object in the category of schemes.

                Equations
                  Instances For
                    @[instance 100]
                    @[instance 100]

                    A scheme is initial if its underlying space is empty .

                    Equations
                      Instances For

                        Spec 0 is the initial object in the category of schemes.

                        Equations
                          Instances For
                            @[instance 100]

                            The images of each component in the coproduct is disjoint.

                            noncomputable def AlgebraicGeometry.sigmaOpenCover {σ : Type v} (g : σScheme) [Small.{u, v} σ] :

                            The cover of ∐ X by the Xᵢ.

                            Equations
                              Instances For
                                @[simp]
                                theorem AlgebraicGeometry.sigmaOpenCover_obj {σ : Type v} (g : σScheme) [Small.{u, v} σ] (a✝ : σ) :
                                (sigmaOpenCover g).obj a✝ = g a✝
                                @[simp]
                                theorem AlgebraicGeometry.sigmaOpenCover_J {σ : Type v} (g : σScheme) [Small.{u, v} σ] :
                                noncomputable def AlgebraicGeometry.sigmaMk {ι : Type u} (f : ιScheme) :
                                (i : ι) × (f i) ≃ₜ ↥( f)

                                The underlying topological space of the coproduct is homeomorphic to the disjoint union.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem AlgebraicGeometry.sigmaMk_mk {ι : Type u} (f : ιScheme) (i : ι) (x : (f i)) :
                                    theorem AlgebraicGeometry.isOpenImmersion_sigmaDesc {σ : Type v} (g : σScheme) [Small.{u, v} σ] {X : Scheme} (α : (i : σ) → g i X) [∀ (i : σ), IsOpenImmersion (α i)] ( : Pairwise (Function.onFun Disjoint fun (x : σ) => Set.range (CategoryTheory.ConcreteCategory.hom (α x).base))) :
                                    theorem AlgebraicGeometry.nonempty_isColimit_cofanMk_of {σ : Type v} [Small.{u, v} σ] {X : σScheme} {S : Scheme} (f : (i : σ) → X i S) [∀ (i : σ), IsOpenImmersion (f i)] (hcov : ⨆ (i : σ), Scheme.Hom.opensRange (f i) = ) (hdisj : Pairwise (Function.onFun Disjoint fun (x : σ) => Scheme.Hom.opensRange (f x))) :

                                    S is the disjoint union of Xᵢ if the Xᵢ are covering, pairwise disjoint open subschemes of S.

                                    (Implementation Detail) The coproduct of the two schemes is given by indexed coproducts over WalkingPair.

                                    Equations
                                      Instances For
                                        noncomputable def AlgebraicGeometry.coprodMk (X Y : Scheme) :
                                        X Y ≃ₜ ↥(X ⨿ Y)

                                        The underlying topological space of the coproduct is homeomorphic to the disjoint union

                                        Equations
                                          Instances For
                                            noncomputable def AlgebraicGeometry.coprodOpenCover (X Y : Scheme) :

                                            The open cover of the coproduct of two schemes.

                                            Equations
                                              Instances For

                                                If X and Y are open disjoint and covering open subschemes of S, S is the disjoint union of X and Y.

                                                The map Spec R ⨿ Spec S ⟶ Spec (R × S). This is an isomorphism as witnessed by an IsIso instance provided below.

                                                Equations
                                                  Instances For
                                                    noncomputable def AlgebraicGeometry.sigmaSpec {ι : Type u} (R : ιCommRingCat) :
                                                    ( fun (i : ι) => Spec (R i)) Spec (CommRingCat.of ((i : ι) → (R i)))

                                                    The canonical map ∐ Spec Rᵢ ⟶ Spec (Π Rᵢ). This is an isomorphism when the product is finite.

                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem AlgebraicGeometry.ι_sigmaSpec {ι : Type u} (R : ιCommRingCat) (i : ι) :
                                                        instance AlgebraicGeometry.instIsOpenImmersionMapOfHomForallEvalRingHom {ι : Type u} (i : ι) (R : ιType (max u_1 u)) [(i : ι) → CommRing (R i)] :
                                                        instance AlgebraicGeometry.instIsAffineSigmaObjSchemeOfFinite {ι : Type u} (f : ιScheme) [Finite ι] [∀ (i : ι), IsAffine (f i)] :