Documentation

Mathlib.AlgebraicGeometry.RationalMap

Rational maps between schemes #

Main definitions #

A partial map from X to Y (X.PartialMap Y) is a morphism into Y defined on a dense open subscheme of X.

  • domain : X.Opens

    The domain of definition of a partial map.

  • dense_domain : Dense self.domain
  • hom : self.domain Y

    The underlying morphism of a partial map.

Instances For
    @[reducible, inline]

    A partial map is a S-map if the underlying morphism is.

    Equations
      Instances For
        noncomputable def AlgebraicGeometry.Scheme.PartialMap.restrict {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :

        The restriction of a partial map to a smaller domain.

        Equations
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.PartialMap.restrict_hom {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
            @[simp]
            theorem AlgebraicGeometry.Scheme.PartialMap.restrict_domain {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
            (f.restrict U hU hU').domain = U
            @[simp]
            theorem AlgebraicGeometry.Scheme.PartialMap.restrict_restrict {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) (V : X.Opens) (hV : Dense V) (hV' : V U) :
            (f.restrict U hU hU').restrict V hV hV' = f.restrict V hV
            theorem AlgebraicGeometry.Scheme.PartialMap.restrict_restrict_hom {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) (V : X.Opens) (hV : Dense V) (hV' : V U) :
            ((f.restrict U hU hU').restrict V hV hV').hom = (f.restrict V hV ).hom
            instance AlgebraicGeometry.Scheme.PartialMap.instIsOverRestrict {X Y S : Scheme} [X.Over S] [Y.Over S] (f : X.PartialMap Y) [IsOver S f] (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
            IsOver S (f.restrict U hU hU')

            The composition of a partial map and a morphism on the right.

            Equations
              Instances For
                instance AlgebraicGeometry.Scheme.PartialMap.instIsOverCompHomOfIsOver {X Y Z S : Scheme} [X.Over S] [Y.Over S] [Z.Over S] (f : X.PartialMap Y) (g : Y Z) [IsOver S f] [Hom.IsOver g S] :
                IsOver S (f.compHom g)

                A scheme morphism as a partial map.

                Equations
                  Instances For
                    noncomputable def AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem {X Y : Scheme} (f : X.PartialMap Y) {x : X} (hx : x f.domain) :

                    If x is in the domain of a partial map f, then f restricts to a map from Spec 𝒪_x.

                    Equations
                      Instances For
                        @[reducible, inline]

                        A partial map restricts to a map from Spec K(X).

                        Equations
                          Instances For
                            theorem AlgebraicGeometry.Scheme.PartialMap.fromSpecStalkOfMem_restrict {X Y : Scheme} (f : X.PartialMap Y) {U : X.Opens} (hU : Dense U) (hU' : U f.domain) {x : X} (hx : x U) :

                            Given S-schemes X and Y such that Y is locally of finite type and X is irreducible germ-injective at x (e.g. when X is integral), any S-morphism Spec 𝒪ₓ ⟶ Y spreads out to a partial map from X to Y.

                            Equations
                              Instances For
                                noncomputable def AlgebraicGeometry.Scheme.PartialMap.equiv {X Y : Scheme} (f g : X.PartialMap Y) :

                                Two partial maps are equivalent if they are equal on a dense open subscheme.

                                Equations
                                  Instances For
                                    theorem AlgebraicGeometry.Scheme.PartialMap.restrict_equiv {X Y : Scheme} (f : X.PartialMap Y) (U : X.Opens) (hU : Dense U) (hU' : U f.domain) :
                                    (f.restrict U hU hU').equiv f
                                    theorem AlgebraicGeometry.Scheme.PartialMap.equiv_iff_of_isSeparated_of_le {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f g : X.PartialMap Y} [IsOver S f] [IsOver S g] {W : X.Opens} (hW : Dense W) (hWl : W f.domain) (hWr : W g.domain) :
                                    f.equiv g (f.restrict W hW hWl).hom = (g.restrict W hW hWr).hom

                                    Two partial maps from reduced schemes to separated schemes are equivalent if and only if they are equal on any open dense subset.

                                    theorem AlgebraicGeometry.Scheme.PartialMap.equiv_iff_of_isSeparated {X Y S : Scheme} [X.Over S] [Y.Over S] [IsReduced X] [IsSeparated (Y S)] {f g : X.PartialMap Y} [IsOver S f] [IsOver S g] :
                                    f.equiv g (f.restrict (f.domaing.domain) ).hom = (g.restrict (f.domaing.domain) ).hom

                                    Two partial maps from reduced schemes to separated schemes are equivalent if and only if they are equal on the intersection of the domains.

                                    Two partial maps from reduced schemes to separated schemes with the same domain are equivalent if and only if they are equal.

                                    A partial map from a reduced scheme to a separated scheme is equivalent to a morphism if and only if it is equal to the restriction of the morphism.

                                    A rational map from X to Y (X ⤏ Y) is an equivalence class of partial maps, where two partial maps are equivalent if they are equal on a dense open subscheme.

                                    Equations
                                      Instances For

                                        The notation for rational maps.

                                        Equations
                                          Instances For

                                            A partial map as a rational map.

                                            Equations
                                              Instances For
                                                @[reducible, inline]

                                                A scheme morphism as a rational map.

                                                Equations
                                                  Instances For

                                                    A rational map is a S-map if some partial map in the equivalence class is a S-map.

                                                    Instances
                                                      @[simp]

                                                      The composition of a rational map and a morphism on the right.

                                                      Equations
                                                        Instances For
                                                          theorem AlgebraicGeometry.Scheme.PartialMap.exists_restrict_isOver {X Y : Scheme} (S : Scheme) [X.Over S] [Y.Over S] (f : X.PartialMap Y) [RationalMap.IsOver S f.toRationalMap] :
                                                          ∃ (U : X.Opens) (hU : Dense U) (hU' : U f.domain), IsOver S (f.restrict U hU hU')

                                                          A rational map restricts to a map from Spec K(X).

                                                          Equations
                                                            Instances For

                                                              Given S-schemes X and Y such that Y is locally of finite type and X is integral, any S-morphism Spec K(X) ⟶ Y spreads out to a rational map from X to Y.

                                                              Equations
                                                                Instances For

                                                                  Given S-schemes X and Y such that Y is locally of finite type and X is integral, S-morphisms Spec K(X) ⟶ Y correspond bijectively to S-rational maps from X to Y.

                                                                  Equations
                                                                    Instances For

                                                                      Given S-schemes X and Y such that Y is locally of finite type and X is integral, S-morphisms Spec K(X) ⟶ Y correspond bijectively to S-rational maps from X to Y.

                                                                      Equations
                                                                        Instances For

                                                                          The domain of definition of a rational map.

                                                                          Equations
                                                                            Instances For

                                                                              The open cover of the domain of f : X ⤏ Y, consisting of all the domains of the partial maps in the equivalence class.

                                                                              Equations
                                                                                Instances For

                                                                                  If f : X ⤏ Y is a rational map from a reduced scheme to a separated scheme, then f can be represented as a partial map on its domain of definition.

                                                                                  Equations
                                                                                    Instances For