Documentation

Mathlib.AlgebraicTopology.FundamentalGroupoid.Product

Fundamental groupoid preserves products #

In this file, we give the following definitions/theorems:

The projection map Π i, X i → X i induces a map π(Π i, X i) ⟶ π(X i).

Equations
    Instances For
      @[simp]
      theorem FundamentalGroupoidFunctor.proj_map {I : Type u} (X : ITopCat) (i : I) (x₀ x₁ : (FundamentalGroupoid.fundamentalGroupoidFunctor.obj (TopCat.of ((i : I) → (X i))))) (p : x₀ x₁) :

      The projection map is precisely Path.Homotopic.proj interpreted as a functor

      The map taking the pi product of a family of fundamental groupoids to the fundamental groupoid of the pi product. This is actually an isomorphism (see piIso)

      Equations
        Instances For
          @[simp]
          theorem FundamentalGroupoidFunctor.piToPiTop_obj_as {I : Type u} (X : ITopCat) (g : (i : I) → (FundamentalGroupoid.fundamentalGroupoidFunctor.obj (X i))) (i : I) :
          ((piToPiTop X).obj g).as i = (g i).as
          @[simp]
          theorem FundamentalGroupoidFunctor.piToPiTop_map {I : Type u} (X : ITopCat) {X✝ Y✝ : (i : I) → (FundamentalGroupoid.fundamentalGroupoidFunctor.obj (X i))} (p : X✝ Y✝) :

          Shows piToPiTop is an isomorphism, whose inverse is precisely the pi product of the induced projections. This shows that fundamentalGroupoidFunctor preserves products.

          Equations
            Instances For
              @[simp]

              This is piIso.inv as a cone morphism (in fact, isomorphism)

              Equations
                Instances For

                  The induced map of the left projection map X × Y → X

                  Equations
                    Instances For

                      The induced map of the right projection map X × Y → Y

                      Equations
                        Instances For

                          The map taking the product of two fundamental groupoids to the fundamental groupoid of the product of the two topological spaces. This is in fact an isomorphism (see prodIso).

                          Equations
                            Instances For
                              theorem FundamentalGroupoidFunctor.prodToProdTop_map (A B : TopCat) {x₀ x₁ : (FundamentalGroupoid.fundamentalGroupoidFunctor.obj A)} {y₀ y₁ : (FundamentalGroupoid.fundamentalGroupoidFunctor.obj B)} (p₀ : x₀ x₁) (p₁ : y₀ y₁) :
                              (prodToProdTop A B).map (p₀, p₁) = Path.Homotopic.prod p₀ p₁

                              Shows prodToProdTop is an isomorphism, whose inverse is precisely the product of the induced left and right projections.

                              Equations
                                Instances For