Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Degenerate

Degenerate simplices #

Given a simplicial set X and n : ℕ, we define the sets X.degenerate n and X.nonDegenerate n of degenerate or non-degenerate simplices of dimension n.

TODO (@joelriou) #

An n-simplex of a simplicial set X is degenerate if it is in the range of X.map f.op for some morphism f : [n] ⟶ [m] with m < n.

Equations
    Instances For

      The set of n-dimensional non-degenerate simplices in a simplicial set X is the complement of X.degenerate n.

      Equations
        Instances For
          @[simp]
          @[deprecated SSet.mem_nonDegenerate_iff_notMem_degenerate (since := "2025-05-23")]

          Alias of SSet.mem_nonDegenerate_iff_notMem_degenerate.

          @[deprecated SSet.mem_degenerate_iff_notMem_nonDegenerate (since := "2025-05-23")]

          Alias of SSet.mem_degenerate_iff_notMem_nonDegenerate.

          theorem SSet.exists_nonDegenerate (X : SSet) {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) :
          ∃ (m : ) (f : SimplexCategory.mk n SimplexCategory.mk m) (_ : CategoryTheory.Epi f) (y : (X.nonDegenerate m)), x = X.map f.op y
          theorem SSet.isIso_of_nonDegenerate (X : SSet) {n : } (x : (X.nonDegenerate n)) {m : SimplexCategory} (f : SimplexCategory.mk n m) [CategoryTheory.Epi f] (y : X.obj (Opposite.op m)) (hy : X.map f.op y = x) :