Documentation

Mathlib.NumberTheory.NumberField.CanonicalEmbedding.FundamentalCone

Fundamental Cone #

Let K be a number field of signature (rโ‚, rโ‚‚). We define an action of the units (๐“ž K)หฃ on the mixed space โ„^rโ‚ ร— โ„‚^rโ‚‚ via the mixedEmbedding. The fundamental cone is a cone in the mixed space that is a fundamental domain for the action of (๐“ž K)หฃ modulo torsion.

Main definitions and results #

Tags #

number field, canonical embedding, units, principal ideals

The action of (๐“ž K)หฃ on the mixed space โ„^rโ‚ ร— โ„‚^rโ‚‚ defined, for u : (๐“ž K)หฃ, by multiplication component by component with mixedEmbedding K u.

Equations

    The map from the mixed space to logSpace K defined in such way that: 1) it factors the map logEmbedding, see logMap_eq_logEmbedding; 2) it is constant on the sets {c โ€ข x | c โˆˆ โ„, c โ‰  0} if norm x โ‰  0, see logMap_real_smul.

    Equations
      Instances For

        The fundamental cone is a cone in the mixed space, ie. a subset fixed by multiplication by a nonzero real number, see smul_mem_of_mem, that is also a fundamental domain for the action of (๐“ž K)หฃ modulo torsion, see exists_unit_smul_mem and torsion_smul_mem_of_mem.

        Equations
          Instances For

            The intersection between the fundamental cone and the integerLattice.

            Equations
              Instances For

                If a is in integerSet, then there is a unique algebraic integer in ๐“ž K such that mixedEmbedding K x = a.

                For a : integerSet K, the unique nonzero algebraic integer x such that its image by mixedEmbedding is equal to a. Note that we state the fact that x โ‰  0 by saying that x is a nonzero divisors since we will use later on the isomorphism Ideal.associatesNonZeroDivisorsEquivIsPrincipal, see integerSetEquiv.

                Equations
                  Instances For

                    If x : mixedSpace K is nonzero and the image of an algebraic integer, then there exists a unit such that u โ€ข x โˆˆ integerSet K.

                    The set integerSet K is stable under the action of the torsion.

                    The action of torsion K on integerSet K.

                    Equations
                      @[simp]
                      theorem NumberField.mixedEmbedding.fundamentalCone.integerSetTorsionSMul_smul_coe {K : Type u_1} [Field K] [NumberField K] (xโœ : โ†ฅ(Units.torsion K)) (xโœยน : โ†‘(integerSet K)) :
                      โ†‘(xโœ โ€ข xโœยน) = โ†‘xโœ โ€ข โ†‘xโœยน

                      The mixedEmbedding.norm of a : integerSet K as a natural number, see also intNorm_coe.

                      Equations
                        Instances For
                          @[simp]

                          The norm intNorm lifts to a function on integerSet K modulo torsion K.

                          Equations
                            Instances For

                              The map that sends an element of a : integerSet K to the associates class of its preimage in (๐“ž K)โฐ. By quotienting by the kernel of the map, which is equal to the subgroup of torsion, we get the equivalence integerSetQuotEquivAssociates.

                              Equations
                                Instances For

                                  The equivalence between integerSet K modulo torsion K and Associates (๐“ž K)โฐ.

                                  Equations
                                    Instances For

                                      The equivalence between integerSet K and the product of the set of nonzero principal ideals of K and the torsion of K.

                                      Equations
                                        Instances For

                                          For an integer n, The equivalence between the elements of integerSet K of norm n and the product of the set of nonzero principal ideals of K of norm n and the torsion of K.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst {K : Type u_1} [Field K] [NumberField K] {n : โ„•} (a : { a : โ†‘(integerSet K) // mixedEmbedding.norm โ†‘a = โ†‘n }) :
                                              โ†‘โ†‘((integerSetEquivNorm K n) a).1 = Ideal.span {โ†‘(preimageOfMemIntegerSet โ†‘a)}

                                              For n positive, the number of principal ideals in ๐“ž K of norm n multiplied by the order of the torsion of K is equal to the number of elements in integerSet K of norm n.

                                              The intersection between the fundamental cone and the idealLattice defined by the image of the integral ideal J.

                                              Equations
                                                Instances For
                                                  theorem NumberField.mixedEmbedding.fundamentalCone.mem_idealSet {K : Type u_1} [Field K] [NumberField K] {x : mixedSpace K} {J : โ†ฅ(nonZeroDivisors (Ideal (RingOfIntegers K)))} :
                                                  x โˆˆ idealSet K J โ†” x โˆˆ fundamentalCone K โˆง โˆƒ a โˆˆ โ†‘โ†‘J, (mixedEmbedding K) โ†‘a = x
                                                  def NumberField.mixedEmbedding.fundamentalCone.idealSetMap (K : Type u_1) [Field K] [NumberField K] (J : โ†ฅ(nonZeroDivisors (Ideal (RingOfIntegers K)))) :
                                                  โ†‘(idealSet K J) โ†’ โ†‘(integerSet K)

                                                  The map that sends a : idealSet to an element of integerSet. This map exists because J is an integral ideal.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem NumberField.mixedEmbedding.fundamentalCone.idealSetMap_apply (K : Type u_1) [Field K] [NumberField K] (J : โ†ฅ(nonZeroDivisors (Ideal (RingOfIntegers K)))) (a : โ†‘(idealSet K J)) :
                                                      โ†‘(idealSetMap K J a) = โ†‘a
                                                      def NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv (K : Type u_1) [Field K] [NumberField K] (J : โ†ฅ(nonZeroDivisors (Ideal (RingOfIntegers K)))) :
                                                      โ†‘(idealSet K J) โ‰ƒ โ†‘{a : โ†‘(integerSet K) | โ†‘(preimageOfMemIntegerSet a) โˆˆ โ†‘โ†‘J}

                                                      The map idealSetMap is actually an equiv between idealSet K J and the elements of integerSet K whose preimage lies in J.

                                                      Equations
                                                        Instances For
                                                          theorem NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_apply {K : Type u_1} [Field K] [NumberField K] {J : โ†ฅ(nonZeroDivisors (Ideal (RingOfIntegers K)))} (a : โ†‘(idealSet K J)) :
                                                          โ†‘โ†‘((idealSetEquiv K J) a) = โ†‘a
                                                          theorem NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_symm_apply {K : Type u_1} [Field K] [NumberField K] {J : โ†ฅ(nonZeroDivisors (Ideal (RingOfIntegers K)))} (a : { a : โ†‘(integerSet K) // โ†‘(preimageOfMemIntegerSet a) โˆˆ โ†‘โ†‘J }) :
                                                          โ†‘((idealSetEquiv K J).symm a) = โ†‘โ†‘a

                                                          For an integer n, The equivalence between the elements of idealSet K of norm n and the product of the set of nonzero principal ideals of K divisible by J of norm n and the torsion of K.

                                                          Equations
                                                            Instances For

                                                              For s : โ„, the number of principal nonzero ideals in ๐“ž K divisible par J of norm โ‰ค s multiplied by the order of the torsion of K is equal to the number of elements in idealSet K J of norm โ‰ค s.