Documentation

Mathlib.NumberTheory.NumberField.FinitePlaces

Finite places of number fields #

This file defines finite places of a number field K as absolute values coming from an embedding into a completion of K associated to a non-zero prime ideal of š“ž K.

Main Definitions and Results #

Tags #

number field, places, finite places

@[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm (since := "2025-02-28")]

Alias of NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm.


The norm of a maximal ideal is > 1

The norm of a maximal ideal as an element of ā„ā‰„0 is > 1

@[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal (since := "2025-02-28")]

Alias of NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal.


The norm of a maximal ideal as an element of ā„ā‰„0 is > 1

The norm of a maximal ideal as an element of ā„ā‰„0 is ≠ 0

@[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero (since := "2025-02-28")]

Alias of NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero.


The norm of a maximal ideal as an element of ā„ā‰„0 is ≠ 0

The v-adic absolute value on K defined as the norm of v raised to negative v-adic valuation

Equations
    Instances For
      @[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv (since := "2025-02-28")]

      Alias of NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv.


      The v-adic absolute value on K defined as the norm of v raised to negative v-adic valuation

      Equations
        Instances For
          @[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def (since := "2025-02-28")]

          Alias of NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def.

          The embedding of a number field inside its completion with respect to v.

          Equations
            Instances For
              @[deprecated NumberField.FinitePlace.embedding (since := "2025-02-28")]

              Alias of NumberField.FinitePlace.embedding.


              The embedding of a number field inside its completion with respect to v.

              Equations
                Instances For

                  A finite place of a number field K is a place associated to an embedding into a completion with respect to a maximal ideal.

                  Equations
                    Instances For

                      Return the finite place defined by a maximal ideal v.

                      Equations
                        Instances For

                          The norm of the image after the embedding associated to v is equal to the v-adic absolute value.

                          The norm of the image after the embedding associated to v is equal to the norm of v raised to the power of the v-adic valuation.

                          The norm of the image after the embedding associated to v is equal to the norm of v raised to the power of the v-adic valuation for integers.

                          The v-adic absolute value satisfies the ultrametric inequality.

                          @[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_add_le_max (since := "2025-02-28")]

                          Alias of NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_add_le_max.


                          The v-adic absolute value satisfies the ultrametric inequality.

                          The v-adic absolute value of a natural number is ≤ 1.

                          @[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_natCast_le_one (since := "2025-02-28")]

                          Alias of NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_natCast_le_one.


                          The v-adic absolute value of a natural number is ≤ 1.

                          The v-adic absolute value of an integer is ≤ 1.

                          @[deprecated NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_intCast_le_one (since := "2025-02-28")]

                          Alias of NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_intCast_le_one.


                          The v-adic absolute value of an integer is ≤ 1.

                          @[deprecated NumberField.FinitePlace.norm_le_one (since := "2025-02-28")]

                          Alias of NumberField.FinitePlace.norm_le_one.


                          The v-adic norm of an integer is at most 1.

                          The v-adic norm of an integer is 1 if and only if it is not in the ideal.

                          @[deprecated NumberField.FinitePlace.norm_eq_one_iff_notMem (since := "2025-05-23")]

                          Alias of NumberField.FinitePlace.norm_eq_one_iff_notMem.


                          The v-adic norm of an integer is 1 if and only if it is not in the ideal.

                          @[deprecated NumberField.FinitePlace.norm_eq_one_iff_not_mem (since := "2025-02-28")]

                          Alias of NumberField.FinitePlace.norm_eq_one_iff_notMem.


                          Alias of NumberField.FinitePlace.norm_eq_one_iff_notMem.


                          The v-adic norm of an integer is 1 if and only if it is not in the ideal.

                          The v-adic norm of an integer is less than 1 if and only if it is in the ideal.

                          @[deprecated NumberField.FinitePlace.norm_lt_one_iff_mem (since := "2025-02-28")]

                          Alias of NumberField.FinitePlace.norm_lt_one_iff_mem.


                          The v-adic norm of an integer is less than 1 if and only if it is in the ideal.

                          @[deprecated NumberField.FinitePlace.mk_apply (since := "2025-02-28")]

                          Alias of NumberField.FinitePlace.mk_apply.

                          For a finite place w, return a maximal ideal v such that w = finite_place v .

                          Equations
                            Instances For
                              theorem NumberField.FinitePlace.pos_iff {K : Type u_1} [Field K] [NumberField K] {w : FinitePlace K} {x : K} :
                              0 < w x ↔ x ≠ 0
                              @[simp]
                              theorem NumberField.FinitePlace.mk_eq_iff {K : Type u_1} [Field K] [NumberField K] {v₁ vā‚‚ : IsDedekindDomain.HeightOneSpectrum (RingOfIntegers K)} :
                              mk v₁ = mk vā‚‚ ↔ v₁ = vā‚‚

                              The equivalence between finite places and maximal ideals.

                              Equations
                                Instances For
                                  theorem NumberField.FinitePlace.maximalIdeal_inj {K : Type u_1} [Field K] [NumberField K] (w₁ wā‚‚ : FinitePlace K) :
                                  w₁.maximalIdeal = wā‚‚.maximalIdeal ↔ w₁ = wā‚‚
                                  theorem NumberField.FinitePlace.mulSupport_finite_int {K : Type u_1} [Field K] [NumberField K] {x : RingOfIntegers K} (h_x_nezero : x ≠ 0) :
                                  (Function.mulSupport fun (w : FinitePlace K) => w ↑x).Finite
                                  theorem NumberField.FinitePlace.mulSupport_finite {K : Type u_1} [Field K] [NumberField K] {x : K} (h_x_nezero : x ≠ 0) :